Case Study: Adapting Global Datasets for Forest Carbon Accounting in Berau

- 1. Decide on pools and fluxes to include.
- 2. Conduct accuracy assessments.
- 3. Calibrate, modify, rebuild.
- 4. Calculate emissions and overall uncertainty.

- 1. Decide on pools and fluxes to include.
- 2. Conduct accuracy assessments.
- 3. Calibrate, modify, rebuild.
- 4. Calculate emissions and overall uncertainty.

- 1. Decide on pools and fluxes to include.
- 2. Conduct accuracy assessments.
- 3. Calibrate, modify, rebuild.
- 4. Calculate emissions and overall uncertainty.

Step 2: Conduct accuracy assessments - Hansen dataset (AD)

Step 2: Conduct accuracy assessments - Hansen dataset (AD)

Step 2: Conduct accuracy assessments - Hansen dataset (AD)

- 1. Decide on pools and fluxes to include.
- 2. Conduct accuracy assessments.
- 3. Calibrate, modify, rebuild.
- 4. Calculate emissions and overall uncertainty.

Step 3: Calibrate, modify, rebuild: biomass map (EF).

Saatchi et al. 2011

Step 3: Calibrate, modify, rebuild: biomass map.

Baccini et al. 2012

Step 3: Calibrate, modify, rebuild: biomass map.

Saatchi et al. 2011

Baccini et al. 2011

- 1. Decide on pools and fluxes to include.
- 2. Conduct accuracy assessments.
- 3. Calibrate, modify, rebuild.
- 4. Calculate emissions and overall uncertainty.

Step 4: Calculate emissions and uncertainty.

Step 4: Calculate emissions and uncertainty.

8 million tonnes net CO₂ Flux from land use change in Berau every year between 2000 and 2010

Net Emissions

Step 4: Calculate emissions and uncertainty. **Comprehensive uncertainty** (including parameters with "unknown" uncertainty) 8.0 Net **Emissions**

Historic LULUCF Carbon Emissions in Berau

Extra Slides

- 1. Decide on the pools and fluxes to include.
- 2. Conduct accuracy assessment of forest loss activity data.
- 3. Calibrate, modify, rebuild.
 - a. Compile forest strata data to build benchmark biomass map.
 - b. Use GLAS to calculate average biomass per forest strata.
 - c. Collect degradation activity data.
 - d. Gather gain-loss degradation emissions data.
 - e. Review literature for other input parameters.
- 4. Calculate emissions and uncertainty.
 - a. Assign uncertainty envelope to all input parameters.
 - b. Translate calculations into comprehensive emissions equation.
 - c. Use Monte Carlo simulation to propagate uncertainty.
 - d. Identify opportunities to reduce uncertainty.

Gain-Loss Accounting

$$\Delta C \triangle (CA_l * EF_l + A_D \triangle (EF_L)) - (A_{l} * SF_l + A_L (EF_R))$$

Step 1: Decide on the pools and fluxes to include.

Pools

- Above-ground live woody biomass (AGLB)
- Below-ground live woody biomass (BGLB)
- Dead woody biomass (DB)
- Litter (LI)
- Soil carbon in wetlands (SCw)
- Soil carbon in uplands (SCu)

Fluxes

- Natural disturbance Forest Loss
- Anthropogenic Forest Loss
- Fire Emissions
- Decay Emissions
- Degradation from legal logging
- Degradation from illegal logging
- Degradation from fuel wood collection
- Degradation from low-intensity fire
- Secondary forest regrowth
- Regrowth after degradation

Forest Loss Emissions

Forest Loss Emissions = Biomass Map

Forest Loss Emissions = Biomass Map * Forest Loss

Area of Loss (Activity Data)

Emissions Factor (Biomass Map)

Step 5: Collect degradation activity data.

																		2000-2010
Logging Concession Name				2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Average	
PT INHUTANI 1 UNIT LABANAN				2046	2046	2046	0	0	0	0	1102	1790	1056	1526	1308	1250	10,087	
PT INHUTANI 1 UNIT SAMBHARATA				1465	1465	1465	0	0	0	809	1433	1603	1127	1765	2223	1465	9,366	
PT KARYA LESTARI				611	219	1090	971	657	834	537	527	183	0	0	682	633	5,631	
ь. Б.	14,000												n=	= 20 lo	gging	conce	essions	3
b. b.	12,000	_																5) 3 7
(ha)	10,000	_		-			Mean	= 9,3 - -	44 ha 				-					
Harvest Area	8,000	-																7
Harve	6,000	-																
	4,000	-																
	2,000																	
		200	0 2	2001	2002	20	003	2004	2005	2006	5 20	007	2008	2009	2010) 2	011	2012

Step 6: Gather gain-loss degradation emissions data.

Global Change Biology

Global Change Biology (2014), doi: 10.1111/gcb.12386

Carbon emissions performance of commercial logging in East Kalimantan, Indonesia

BRONSON GRISCOM*, PETER ELLIS *The Nature Conservancy, 4245 N Fairfax Drive, An PO 118526, Gainesville, FL 32611-8526, USA, ‡Cen 32641, USA

Abstract

Adoption of reduced-impact logging (RIL) meremaining tropical forests. We developed two (reduced CO_2 emissions) due to RIL. The indiconcessions. We determined that a correction f sions certified by the Forest Stewardship Co(N=6), did not have lower overall CO_2 emissionally for the foliation of the fo

Keywords: Borneo, carbon emissions, CO2, Dipteroo

Received 6 March 2013; revised version received 6 July 1

Emissions Drivers

Emissions Drivers

Reference Imagery: Landsat 2000 Show credits for service lay

Reference Imagery: SPOT 2009

Hansen Change

Forclime Change

Hansen Accuracy Assessment Results

Error of Comission – red

Error of Omission – orange No Error – green

Forclime Accuracy Assessment Results

Error of Comission – red

Error of Omission – orange No Error – green

Forest Loss Accuracy Assessment: Results

Step 4: Use GLAS to calculate average biomass per forest strata.

Geoscience Laser Altimeter System (GLAS)

Step 4: Use GLAS to calculate average biomass per forest strata.

Deforestation Over Time

Emissions Over Time

Historic Emissions of CO₂ due to deforestation and logging in Berau District

Source: TNC 2014, unpublished

Logging Emissions

Step 9: Translate calculations into comprehensive emissions equation.

TNC Approach: Gain-Loss Method

IPCC Gain-Loss Equation 2.4:

$$\Delta C = \Delta C_L - \Delta C_G$$
Carbon Flux = (Defor Emissions + Logging Emissions) - (Defor Uptake + Logging Uptake)
$$\Delta C = (A_D * EF_D + A_l * EF_l) - (A_R * SF_R + A_l * SF_l)$$
Approach 3* Tier 3 Approach 2/3 Tier 3 Approach 3* Tier 2 Approach 2/3 Tier 3 Hansen Lit Review Hansen/GOI STREK

Table A1. Description of variables and associated data methods used for emissions calculations.

Variable	Variable description	Mean value	Units	Data type	Data sources.
ΔC (t)	Total net carbon flux (emissions) in Berau	104.4	Mt CO ₂	Spatial, raster (60 x 60m)	TNC analysis of all datasets listed below
$\Delta C_D(t)$	Net carbon flux (emissions) from deforestation	84.4	Mt CO ₂	Spatial, raster (60 x 60m)	TNC analysis of various listed below
$\Delta C_L(t)$	Net carbon flux (emissions) from legal commercial logging	29.2	Mt CO ₂	Spatial, vector	TNC analysis of various listed below
ΔC _s (t)	Net carbon flux (sequestration) in secondary forests	9.3	Mt CO ₂	Spatial, raster (60 x 60m)	TNC analysis of various listed below
$A_o(t)$	Area of deforestation during time t	109,787	ha	Spatial, raster (60 x 60m)	Hansen et. al. 2009*
AGB _{DL}	Above-ground biomass after post-defor, timber extraction	185.6	t C hart	Constant	This study
AGDB	Aboveground dead biomass prior to deforestation	15.2	t C ha"	Constant	Brown and Lugo 1992, others
AGDB _L	Aboveground dead biomass due to commercial logging	43.0	t C ha"	Constant	This study
AGLB	Aboveground live biomass prior to deforestation	168.9	t C ha ⁻¹	Constant	Baccini et. al. 2012 (TNC field data for validat.)
$A_L(t)$	Area of legal commercial logging in HPH	113,016	ha	Tabular data	Wahyudi pers. comm.
$A_R(t)$	Area of 2º forest regrowth in areas cleared before start of time t	63,647	ha	Spatial, raster (60 x 60m)	Miettinen et. al. 2011
BGDB _L	Belowground dead biomass due to commercial logging	13.2	t C hart	Constant	This study
BGLB	Belowground live biomass prior to deforestation	39.6	t C hart	Constant	TNC field data; Baccini et. al. 2012
CC	Combustion completeness of initial deforestation burn	0.49	proportion	Constant	van der Werf et al. 2010
CSL	Carbon sequestration rate in logged forests	1.8	t C hart yrrt	Constant	Ruslandi personal communication
CS _s	Carbon sequestration rate in secondary forests	3.98	t C hart yrt	Constant	Pan et. all 2011 (with Mokany et. al. 2006)
₽K*	Assumed linear decay rate of dead wood	0.055	t C harl yrl	Constant	VCS 2012
EF	Charcoal (elemental) fraction	0.04	proportion	Constant	Nogueira et al. 2008, Malhi et al. 2006, others
FDF	Fraction of deforested land burned within following year:	1.00	proportion	Constant	This study
FDR	Fraction of deforested land regrows to forest annually	0.024	proportion	Spatial, raster (60 x 60m)	Dewi and Ekadinata 2011
FLM	Fraction of logging roads in concessions "maintained."	0.012	proportion	Constant	This study
FMWP	Fraction of RWB processed into medium-term wood products	0.63	proportion	Constant	Winjum et. al. 1998, GOI MoE
FMWPE	Fraction of medium-term wood products emitted	0.28	proportion	Constant	VCS 2012 (20-year modelling period)
FPF	Fraction of deforested land where all AGLB harvested for pulp	0.17	proportion	Constant	Ministry of Forestry; all HTI forest plantations
FSR	Fraction of concessions logging "second rotation" cutting blocks	0.67	proportion	Constant	Griscom and Ellis professional judgement
FSWP	Fraction of RWB lost in short-term wood products	0.33	proportion	Constant	Winjum et. al. 1998, GOI MoF
FTF	Fraction of roundwood biomass from post-defor, timber extraction	0.08	proportion	Constant	TNC field data
FWP	Fraction of roundwood biomass emitted from wood products	0.51	proportion	Constant	VCS 2012
RWB _L	Roundwood biomass from logging	11.15	t C hart	Constant	TNC field data
SC	Soil biomass in geatlands and mangroves prior to deforestation	56.7 to 893.6	t C hart	Constant (dep. on type)	Wayunto et. al. 2004, Murdiyarso et. al. 2010
SCD	Depth of organic soils	0.75 to 2.1	m	Constant (dep. on type)	Wayunto et. al. 2004
SDD	Average depth of draining occurring on cleared organic soils	0.60	m	Constant	Hoojer et. al. 2010
ŧ	Reference time period * Dataset used for analysis is not yet published, but methods are based	10	years	Constant	This study

^{*} Dataset used for analysis is not yet published, but methods are based off of Hansen et. al. 2009.

*Calculated as the fraction of <u>deforestated</u> land occurring out of land zoned for HTI (Forest Plantation).

Step 4: Calculate emissions and uncertainty. **Contribution to Uncertainty Forest** Loss_ **Decay Forest** Carbon Regrowth Soil Carbon Logging Fire Other

Step 11: Identify opportunities to reduce uncertainty.

Compare to Other Estimates

Compare to Other Studies

	Forclime	TNC	MOFOR
Method	Stock-difference	Gain-loss	Stock-difference
Activity Data	Foclime Landcover Maps	Hansen + Benchmark Biomass Map	MOFOR Landcover Maps
C Stocks Data	MOFOR plots, other?	GLAS footprints (Baccini)	MOFOR Plots
Fluxes	Loss, Logging, Regrowth	Loss, Logging, Regrowth	Loss, (Logging), Regrowth
Pools	AG, BG	AG, BG, SC, DC	AG, BG?
Loss Factor	Conversion-based	Process- Based	Conversion Based

Historic LULUCF Carbon Emissions in Berau

