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Computationally Efficient Statistical
Differential Equation Modeling

Using Homogenization

Mevin B. HOOTEN, Martha J. GARLICK, and James A. POWELL

Statistical models using partial differential equations (PDEs) to describe dynami-
cally evolving natural systems are appearing in the scientific literature with some reg-
ularity in recent years. Often such studies seek to characterize the dynamics of tempo-
ral or spatio-temporal phenomena such as invasive species, consumer-resource interac-
tions, community evolution, and resource selection. Specifically, in the spatial setting,
data are often available at varying spatial and temporal scales. Additionally, the neces-
sary numerical integration of a PDE may be computationally infeasible over the spatial
support of interest. We present an approach to impose computationally advantageous
changes of support in statistical implementations of PDE models and demonstrate its
utility through simulation using a form of PDE known as “ecological diffusion.” We
also apply a statistical ecological diffusion model to a data set involving the spread of
mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

This article has supplementary material online.
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1. INTRODUCTION

With the exception of a few ground-breaking efforts (e.g., Fisher 1937; Hotelling 1927),
the use of sophisticated ecological models involving derivatives in a rigorous statistical
setting has only gained ground recently (e.g., Cangelosi and Hooten 2009; Hooten and
Wikle 2008; Wikle 2003; Wikle and Hooten 2010; Zheng and Aukema 2010). As these
recent studies have shown, scientifically motivated statistical models can be specified and
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fit readily in a hierarchical modeling context and often with a computational Bayesian
implementation (i.e., Markov Chain Monte Carlo, MCMC).

Such modeling efforts have shown great promise for making science-based inference on
dynamic natural processes, though they are not without their challenges (Wikle and Hooten
2010). Issues that commonly arise include: the chosen form of stochasticity, numerical
stability of the deterministic equations, and discrepancy between the measurements and
process in terms of spatial and temporal support.

With regard to the change of support issue in particular, the effects of spatial support
changes on statistical inference are well described in the literature (e.g., Gotway and Young
2002; Wikle and Berliner 2005). In the case of upscaling spatial support specifically, com-
mon methods generally involve some form of spatial averaging or integration of the vari-
able of interest over space (Ferreira and Lee 2007). Despite numerous suggestions in the
literature to the contrary, many forms of aggregation in spatio-temporal statistical model-
ing projects still rely on over-simplified and non-scientific spatial and/or temporal scaling
methods (e.g., arithmetic averaging) without regard for the inherent properties or dynamic
features of the process under study. When more sophisticated approaches to handling the
scaling are adopted, they are often based on statistical or computational properties and
less on the mathematical underpinnings of the process being modeled (e.g., Ferreira et al.
2006). In fact, a popular method in the broader context of dimension reduction is to model
the process on some lower-dimensional manifold through the use of a transformation in-
volving a set of phenomenologically justified basis functions (e.g., Hooten and Wikle 2007;
Royle and Wikle 2005; Wikle 2010) rather than mechanistically justified (as we present
herein).

In what follows, we present a general approach to change of support that can be advanta-
geous when utilizing partial differential equation (PDE) models in a statistical framework.
The methodology we present reconciles the statistical and mathematical forms of multi-
scale analysis and can be beneficial, both in terms of dimension reduction and consistency
with the dynamics implied by the chosen mathematical model. A detailed presentation of
the mathematical approach to multi-scale analysis can be found in the mathematical litera-
ture (e.g., Holmes 1995; Murray 2002; Okubo and Levin 2001), thus, here we focus on the
use of multi-scale methods for approximating PDE solutions for statistical inference. We il-
lustrate both the mathematical and statistical analyses through a specific example involving
ecological diffusion and provide a simulation study and discussion of the advantages and
potential applications of this approach. We show that the specific nature of ecological dif-
fusion suggests an appropriate form of upscaling based on harmonic averaging that yields
a more computationally efficient and stable statistical algorithm and sacrifices very little in
the way of statistical inference. We then apply this upscaling approach in the analysis of a
real data set involving the spread of an insect species over a large spatial domain.

1.1. PARTIAL DIFFERENTIAL EQUATION EXAMPLE: ECOLOGICAL DIFFUSION

To begin, we will focus our analysis on the specific example of ecological diffusion.
To gain an understanding of how this form of mathematical model arises and how it may
be useful, we derive it from first principles. Following Turchin (1998), we first consider
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an individual-based or Lagrangian understanding of animal movement. To illustrate the
approach, we will use a one-dimensional spatial domain throughout, which easily general-
izes to higher dimensions.

Suppose that, in a certain time interval (t −�t, t], an animal at location x can move left,
right, or remain where it is with probabilities: φL(x, t), φR(x, t), and φN(x, t), respectively
(where, φL(x, t)+φR(x, t)+φN(x, t) = 1). Then the probability of the animal occupying
location x at time t is:

p(x, t) = φL(x + �x, t − �t)p(x + �x, t − �t)

+ φR(x − �x, t − �t)p(x − �x, t − �t)

+ φN(x, t − �t)p(x, t − �t), (1.1)

where the � notation refers to changes in time and space (i.e., +�x represents the change
in spatial location in the positive direction, for a 1-D spatial domain). If we ultimately seek
an Eulerian model on the probability of occupancy, p(x, t), then we need to replace the
� notation with differential notation. Turchin (1998) proceeds by expanding each of the
probabilities in a Taylor series, truncating to remove higher order terms, and then substi-
tuting the truncated expansions back into (1.1). This yields a recurrence equation involving
partial derivatives:

p = (φL + φN + φR)p − �t(φL + φN + φR)
∂p

∂t
− �tp

∂

∂t
(φL + φN + φR)

− �x(φR − φL)
∂p

∂x
− �xp

∂

∂x
(φR − φL) + �x2

2
(φL + φR)

∂2p

∂x2

+ �x2 ∂p

∂x

∂

∂x
(φL + φR) + p

�x2

2

∂2

∂x2
(φL + φR) + · · · ,

where we have defined p ≡ p(x, t), φL ≡ φL(x, t), φN ≡ φN(x, t), and φR ≡ φR(x, t) to
simplify the expressions. Combining like terms results in a PDE of the form:

∂p

∂t
= − ∂

∂x
(βp) + ∂2

∂x2
(δp),

where β = �x(φR − φL)/�t and δ = �x2(φR + φL)/2�t . This resulting model is now
Eulerian and known as the Fokker–Planck or Kolmogorov equation (Risken 1989), and
when thought of in an ecological setting, the spatial density u(x, t), of some number of total
animals (M), can be considered by letting u(x, t) ≡ Mp(x, t). In this context, assuming
for the moment that there is no advection component (i.e., β = 0), we have the ecological
diffusion equation:

∂u

∂t
= ∂2

∂x2
(δu), (1.2)

where the process of interest is u ≡ u(x, t), and δ ≡ δ(x, t) represents the diffusion coeffi-
cients that could vary over space and time. In the specific example that follows, δ represents
animal motility and is only assumed to vary in space (albeit at two scales). We note here
that one could arrive at an alternative reduction of the Fokker–Planck equation by assuming
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that δ = 0, thus implying that animal movement is driven by advection only. Though, per-
haps less intuitive, we might expect such behavior in wind- or water-advected populations
(e.g., egg dispersal in a river system). The methods we present in what follows focus on
the diffusion-only case, as these may be applicable to a greater range of real data scenarios,
but they certainly apply to other forms of PDEs.

Returning to the ecological diffusion model, we should note other ways to arrive at
Equation (1.2) (Turchin 1998); however, we feel that this perspective may be directly ben-
eficial to those modeling spatio-temporal population dynamics, as the recent literature sug-
gests (e.g., Wikle and Hooten 2010; Lindgren, Rue, and Lindstrom 2011). The properties of
(1.2) are quite a bit different than those of plain or Fickian diffusions. The fundamental dif-
ference is that the diffusion coefficient is on the inside of the two spatial derivatives rather
than between them (Fickian, ∂u

∂t
= ∂

∂x
δ ∂

∂x
(u)) or on the outside (plain, ∂u

∂t
= δ ∂2

∂x2 (u)).
Ecological diffusion describes a much less smooth process u(x, t) than Fickian or plain
diffusion, and allows for motility-driven congregation to sharply differ between neighbor-
ing habitat types. In some areas, animals may move slow, perhaps to forage, whereas in
other areas they move fast, as in exposed terrain. The resulting behavior shows a congrega-
tive effect in areas of low motility (i.e., δ ↓) and a dispersive effect in areas of high motility
(i.e., δ ↑). In fact, depending on the boundary conditions, the steady-state solution has u

proportional to the inverse of δ.

1.2. STATISTICAL IMPLEMENTATION

Recent efforts in spatio-temporal statistical modeling (e.g., Cressie and Wikle 2010;
Hooten and Wikle 2008; Wikle 2003; Wikle et al. 2001; Wikle and Hooten 2010; Zheng
and Aukema 2010) suggest that deterministic equations, such as (1.2), can be placed
into a statistical context by assuming three things: first, that the dynamic process can
be measured, and those observations are subject to sampling error; second, that the Eu-
lerian model in (1.2) does not define the exact dynamics of the system, but, rather,
serves as a well-founded scientific motivation for parameterizing the dynamics; third,
we seek to estimate the model parameters (e.g., δ) given the observed data. Thus, we
have three explicit sources of uncertainty in the model: observation, process, and pa-
rameter uncertainty. As discussed throughout the recent statistical literature on the sub-
ject, this situation is ideal for the use of a hierarchical model (e.g., Berliner 1996;
Cressie et al. 2009). In this setting, we can think of the measurements as observed counts
of animals, N(x, t), at a set of locations and times. Then, by modeling the latent process
u(x, t) we can learn about the dynamics. Thus, using vector notation to denote finite sets of
state variables and parameters (e.g., u(t) ≡ (u(1, t), . . . , u(x, t), . . . , u(n, t))′ for n spatial
locations of interest), let the statistical model be specified as

N(x, t) ∼ [
N(x, t)

∣∣ u(x, t)
]
, ∀x, t,

u(x, t) ∼ [
u(x, t)

∣∣ f
(
u(t − �t), δ

)]
, ∀x, t,

where the ‘[·]’ notation refers to a probability distribution, δ represents a set of diffusion
coefficients corresponding to each of the spatial locations, and the ecological diffusion
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model (1.2) is represented by a discretized approximation f (u(t − �t), δ). Typically the
discretized approximation amounts to a difference equation, though more sophisticated
solvers could be employed. Note that, in some situations, the specific form of f could
facilitate estimation (e.g., if linear with Gaussian error, then conjugacy is a byproduct).
Then, assuming that a finite set of unique coefficients can be modeled by δ ∼ [δ], in a
Bayesian framework we seek to find the conditional distribution (i.e., posterior) of the
parameters δ and latent state variables u(t) given the data N(t):

[{
u(t)

}
, δ

∣∣ {
N(t)

}] ∝ [Data | Process][Process | Parameters][Parameters]
∝

∏

t

[
N(t)

∣∣ u(t)
]∏

t

[
u(t)

∣∣ f
(
u(t − �t), δ

)][δ], (1.3)

where, for the time being, a set of initial and boundary conditions are assumed. In the
generalized case, additional conditions could be (and have been) further modeled (Wikle,
Berliner, and Milliff 2003).

This framework has proven to be a powerful means for directly incorporating scientific
information into the modeling process and provides an intuitive way to account for obser-
vational and process uncertainty while estimating the parameters that control the dynam-
ics. In principle, this statistical framework could be employed for any differential equation
model if sufficient data were available to provide the learning. In practice, several com-
plications can arise when fitting such models. First, if the model is fit using MCMC, the
algorithm will require iterative evaluation of the discretized forward model f ; this can be
very computationally demanding if the discretization is spatially and/or temporally fine.
Additionally, there is often a discrepancy between the support of the measurements and
that of the process, but inference is desired at the finer of the two scales. In the specific
situation with a spatially heterogeneous set of diffusion coefficients (i.e., δ(x)), the dimen-
sion of the parameter space is potentially huge. Finally, there is the issue of stability of
the forward model (f ) itself and the fact that ecological diffusion is inherently less numer-
ically stable than simpler forms (e.g., Fickian and plain diffusion; Mitchell and Griffiths
1980).

In the following section, we take an analytical approach to change of support in PDE
modeling by introducing additional temporal and spatial scales in what is referred to as
“homogenization” in the PDE literature (Holmes 1995; Pavliotis and Stuart 2008). We
will see that such analyses can lead to a choice of statistical quantities that are consistent
with the mathematics while inducing an advantageous change of support in the inverse
implementation of the model. The result is a faster, more robust algorithm for fitting PDE
models to data in a rigorous statistical framework.

2. HOMOGENIZATION FOR ECOLOGICAL DIFFUSION

2.1. MODEL-SPECIFIC UPSCALING METHOD

Homogenization is a mathematical technique that uses the “method of multiple scales”
and can be utilized to reframe the ecological diffusion equation in terms of a larger spatial
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scale, while preserving the small scale variability in the diffusion (i.e., motility) coefficient.
As described in Section 1.1, the spread of a population or disease is connected to the move-
ment of individuals in local habitats as well as over large landscapes. Therefore, we assume
the diffusion coefficient depends on two spatial scales, one which varies quickly over short
distances (e.g., due to vegetation and soil characteristics) and one which varies over larger
landscape scales (e.g., due to climate and geography). We introduce a parameter, ε, which
is the ratio of the small and large scales. That is, let x be the large spatial scale with an
associated slow time scale, t . Then the spatial grain (or resolution) can be expressed as
�x = �y

ε
, while the associated time grains are related by �t = �τ

ε2 . For example, if 1 unit

of x is the same as 10 units of y, then ε = 1
10 , and changes on the order of O(ε) in x

become order O(1) changes in y.
We assume that the dependent variable u can be written as a power series in ε, u = u0 +

εu1 +ε2u2 +· · · . Since ε is small (i.e., closer to zero than one), the first term, u0 contributes
most to the approximation of u, with the other terms correcting the approximation. The
solution u0 is referred to as the leading order approximation of u. The idea behind the
homogenization of ecological diffusion is not to find an analytical solution, but rather to
rewrite the diffusion equation in terms of u0 as a function of the large landscape scale and
slow time scale with an “averaged” motility coefficient.

Transforming the derivatives in terms of the new variables, x, y, t , and τ , and replacing
u with the above power series, the ecological diffusion equation becomes

(
∂

∂τ
+ ε2 ∂

∂t

)(
u0 + εu1 + ε2u2 + · · · )

=
(

∂2

∂y2
+ 2ε

∂2

∂x∂y
+ ε2 ∂2

∂x2

)
δ(x, y)

(
u0 + εu1 + ε2u2 + · · · ). (2.1)

Even though it appears that this greatly complicates things, it actually simplifies them,
because this equation can be divided into a series of simpler equations by equating like
powers of ε. We begin by gathering the terms of order ε0 to form the equation ∂u0

∂τ
=

∂2

∂y2 (δ(x, y)u0). Note that this is a diffusion equation with derivatives in terms of the small
spatial scale y and the fast time scale, τ . Therefore the solution of this equation decays
quickly to the solution of the steady state equation ∂2

∂y2 (δ(x, y)u0) = 0, which is u0 =
c(x, t)/δ(x, y). We proceed now with the equation formed by terms with ε1; it is solved in
the same manner and the result is similar, yielding u1 = b(x, t)/δ(x, y). This is precisely
the same equation as for u0, and since any relevant c is already satisfied by u0, the b for
u1 is homogeneous, and consequently b = 0. The terms b and c are effectively integration
“constants” (i.e., constant in y) and we return to them in what follows.

Finally, gathering the terms with ε2 forms the equation

∂u2

∂τ
+ ∂u0

∂t
= ∂2

∂y2

(
δ(x, y)u2

) + ∂2

∂x2

(
δ(x, y)u0

)
. (2.2)

As in the equations for ε0 and ε1, there is a derivative in the fast time scale τ , so the
solution to this equation decays rapidly to the solution of the steady state equation with
respect to τ (i.e., the equation without the term ∂u2

∂τ
). After substituting our expressions for
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u0 and u1 into (2.1), and retaining the portion of the equation that influences the steady
state with respect to the fast time scale τ , the equation becomes

∂2

∂y2

(
δ(x, y)u2

) = ∂

∂t

(
c(x, t)

δ(x, y)

)
− ∂2

∂x2
c(x, t). (2.3)

This is due to the simplification of the mixed derivative term in (2.1). The partial derivative
with respect to y, of a function without y dependence, is zero. Since it does not contribute
to the end result, we can set u1 = 0.

Focusing our attention on (2.3), we do not attempt to solve for u2, but rather we ex-
tract the result by integrating this equation once and analyzing the behavior of the terms.
Integrating (2.3) once yields:

∂

∂y

(
δ(x, y)u2

) = a(x, t) + ∂

∂t
c(x, t)

∫

Y

1

δ(x, s)
ds − y

∂2

∂x2
c(x, t), (2.4)

where, a(x, t), like b and c, is constant in y, and Y represents the subset of spatial support
over which averaging is desired. The last two terms on the right-hand side of (2.4) grow
unbounded as y tends toward infinity. That behavior would not occur in a valid solution,
so a necessary condition is that the sum of those two terms equals zero. That is,

lim
y→∞

[
∂

∂t
c(x, t)

∫

Y

1

δ(x, s)
ds − y

∂2

∂x2
c(x, t)

]
= 0. (2.5)

This imposed condition, with a few algebraic manipulations, yields our homogenized dif-
fusion equation:

∂

∂t
c(x, t) = δ̄(x)

∂2

∂x2
c(x, t), (2.6)

where

δ̄(x) ≡
(

lim
y→∞

1

y

∫

Y

1

δ(x, s)
ds

)−1

. (2.7)

The diffusion coefficient δ̄ is now outside of the derivatives (2.6) and is the harmonic mean
of δ over the small scale. The variable c(x, t) in (2.6) is related to the population density u0

by u0 = c(x,t)
δ(x,y)

. Therefore, after (2.6) is solved numerically for c(x, t) over the large scale,
the small scale variability is returned to the solution via division by δ.

2.2. ADVANTAGES OF UPSCALING USING HOMOGENIZATION

The harmonic mean (i.e., the reciprocal of the arithmetic mean of the reciprocals) is
not only a natural result of the homogenization procedure, but it is also very appropriate
for characterizing rates of change (e.g., diffusion coefficients), as it is less than both the
arithmetic and geometric means (by Jensen’s inequality) and thus less sensitive to extreme
values. A brief example can illuminate the importance of this simple, yet elegant statistic,
for models involving speed and distance. That is, consider the situation where an animal
moves at a certain speed s1 for a specific distance (�x), then switches to a different speed,
say s2, for another trip of the same distance. In this situation, the total time should be 2�x

s̄
,
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where s̄ is average speed over both trips. If s1 = 6, s2 = 4, and �x = 1, then the total travel
time is 1

6 + 1
4 = 10

24 , but if the animal traveled at the arithmetic mean speed for the entire
distance (2�x), the total travel time would be 10

25 , whereas the total travel time would be 10
24

if it had traveled at the harmonic mean speed for the entire distance. Clearly, in the above
example, the total travel time would have been too small if the arithmetic mean were used
to average the speeds, whereas the harmonic mean provides the correct travel time. This
result holds in general and demonstrates how the smaller harmonic form of mean can be
better for averaging rates.

From a deterministic perspective, the homogenization result derived in the previous sec-
tion allows one to solve the PDE with a spatially varying diffusion coefficient over large
domains using an efficient computational algorithm. The averaging alone can dramatically
reduce calculations, however the homogenized equation (2.6) also describes the dynamics
of a smooth potential field and this increases computational stability. One can then use
a much coarser discretization in the numerical solver for the forward problem (i.e., by a
factor of 1

ε2 in time and 1
ε

in space). However, from a statistical perspective, we need to
solve the inverse problem. That is, having observed u(x, t) (or some discrete representa-
tion of it), we seek to learn about the parameters controlling the dynamics of the system
(i.e., δ(x)). If a Monte Carlo based estimation method (e.g., MCMC or importance sam-
pling) were used, the above result would be absolutely necessary if inference were desired
over large spatial domains due to the required iterative evaluation of a PDE solver. By
mathematically incorporating an explicit change of support we have effectively simplified
the entire problem and allowed for efficient computation while limiting the information
loss associated with the averaging. Finally, unlike in Fickian homogenization, this result
(i.e., the harmonic averaging) holds for ecological diffusion in higher dimensions (Garlick,
Powell, and Hooten 2011). In fact, we present the mathematical details describing the ho-
mogenization procedure for a generalized version of the 2-D ecological diffusion model in
Supplementary Appendix A.

2.3. IMPLEMENTATION OF PHYSICAL-STATISTICAL MODEL WITH

HOMOGENIZATION

In terms of implementation, one can proceed as described in Section 1.2 where, de-
pending on the type of observations that are made, a suitable statistical data model can be
chosen along with an error distribution for the process model and prior for the parameters.
Assuming that the data consist of observations of animal abundance (i.e., N(x, t), counts
of animals; discussed in more detail in the following section) and we make the appropri-
ate homogenization transformations, we can treat the harmonic mean as an operator using
vector notation (i.e., δ̄ ≡ δ̄(δ)) in the following general hierarchical statistical model:

N(x, t) ∼ [
N(x, t)

∣
∣ u0(x, t)

]
, ∀x, t (2.8)

u0(x, t) ∼ [
u0(x, t)

∣∣ fh

(
u0(t − �t), δ̄(δ)

)]
, ∀x, t (2.9)

δ ∼ [δ], (2.10)
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where the function fh represents the plain diffusion solver as a difference equation. Note
that the process stage (2.9) of the hierarchical model could either be stochastic or a degen-
erate distribution implying no additional process uncertainty beyond that provided through
the data model (2.8).

Though perhaps possible, it would not be trivial to fit such a model and obtain uncer-
tainty estimates for model parameters using maximum likelihood. Therefore, we describe
a Bayesian approach to fit the model that uses an MCMC algorithm as described in re-
cent literature pertaining to physical-statistical modeling (e.g., Wikle and Hooten 2010).
The posterior distribution corresponding to the model specified in (2.8)–(2.10) can be ex-
pressed as

[{
u0(t)

}
, δ

∣∣ {
N(t)

}] ∝
∏

t

[
N(t)

∣∣ u0(t)
]∏

t

[
u0(t)

∣∣ f
(
u0(t − �t), δ

)][δ]. (2.11)

Notice that the posterior in (2.11) is similar to that in (1.3) except that it involves a product
over the homogenized process distribution rather than the non-homogenized process. This
model is completely non-conjugate, implying that full-conditional distributions cannot be
found analytically, thus, a Metropolis–Hastings approach must be used to sample from the
full-conditionals sequentially.

The portion of an MCMC algorithm where the homogenization technique helps the
most is when sampling the diffusion coefficients δ. The Metropolis-Hastings ratio:

(
∏

t [u0(t) | fh(u0(t − �t), δ(∗))])[δ(∗)][δ(k−1) | δ(∗)]
(
∏

t [u0(t) | fh(u0(t − �t), δ(k−1))])[δ(k−1)][δ(∗) | δ(k−1)] , (2.12)

needs to be computed at each MCMC step, where δ(k−1) is the last MCMC sample for
δ and it is assumed that u0(t) represents the current MCMC sample for the homogenized
PDE process. From (2.12) we can see the advantage of having the homogenized PDE solver
fh, as on every MCMC iteration we must forward solve the entire PDE using the proposal
value for δ(∗). Thus, the faster the solver, the faster the MCMC algorithm. The plain dif-
fusion solver fh, operating on a coarser spatial support, is much faster and more stable
than the original PDE solver f . Homogenization suggests an optimal statistical change of
support in the latent dynamic process, and, though we are only burdened with calculat-
ing u0(x, t), the statistical model provides inference about δ based on u(x, t). Note that
when we use the term “optimal” here and after we are referring to the fact that the form of
averaging is appropriate and directly relevant for the model we’re considering.

3. SIMULATION: 1-D ECOLOGICAL DIFFUSION
WITH A FINITE SET OF DISTINCT ENVIRONMENTS

In order to illustrate the methods presented above, we consider a simulation of animal
movement in a 1-D spatial setting with three different land types. The idea would be that
animal motility is homogeneous within each distinct land type, but the landscape itself
could be made up of irregular patterns involving those land types. This is a relatively re-
alistic scenario where covariate information may be available for a certain spatial domain



M. B. HOOTEN, M. J. GARLICK, AND J. A. POWELL

(e.g., remotely sensed data) and animals are counted at a set of locations over that land-
scape.

In a computational setting where we must discretize the spatial domain using n finite
areal spatial units, suppose we code a set of p distinct land types using dummy variables
in an n × p design matrix X, then we could write the spatial field of diffusion coeffi-
cients for our domain of interest as δ = Xd, where d is a vector of dimension p × 1, for
p << n, containing the unique coefficients. As a simulation landscape, Figure 1a illus-
trates the irregularity of the land types and their associated diffusions. In this case, though
we evaluated numerous scenarios, the specific one presented here has d = (4,5,6)′. For
comparison, we have also shown the harmonic mean δ̄, averaged over one thirtieth of the
spatial domain (Y) or two units in the discretized case.

To simulate data, we first need to simulate the underlying dynamic u process. Using
no-flux boundary conditions and an initial state where a population is placed in the cen-
ter of the spatial domain and allowed to spread out over time through the PDE in (1.2),
we can visualize the solution as a spatio-temporal process (Figure 1b) where the x-axis
represents space, the y-axis represents population density, and the intensity of the shaded
lines correspond to the time evolution of the system. That is, in Figure 1b, lighter shaded
lines illustrate the process u(x, t) at earlier stages of the temporal evolution and darker
shaded lines correspond to the latter time periods. In Figure 1b, we can see the density
spreading out in such a manner that there tends to be congregation in areas of low motility
and dispersal in areas of higher motility. Also note that we are focusing on the transient
dynamics here and thus the process has not reached the steady-state in the period of time
being considered. This is for two reasons, first because most real data are only available
for the transient period of a natural dynamical system, and second, a different estimation
procedure could be used if the steady state were observed directly due to the relationship
between δ and the steady state of u.

In order to visualize the differences between u(x, t) and c(x, t), notice the smoothness
of c(x, t) in Figure 1c as compared to Figure 1b. Also, notice that we can recover the
approximation u0(x, t), by dividing c(x, t)/δ(x, t) (Figure 1d).

Now, assuming a Poisson distribution for a data model, we can “observe” the simulated
process by sampling N(x, t) ∼ Pois(u(x, t)) for some finite set of locations x and times t

(i.e., 60 locations and 10 times). These observations will serve as simulated data and can
be visualized in the same manner as the underlying dynamical processes (Figure 1e). Note
that there is substantially more noise in the observations N(x, t) than in the underlying
process u(x, t).

For clarity in this example, and because we wish to compare the homogenized sta-
tistical model with the non-homogenized model in terms of parameter estimation, we
will consider a Bayesian statistical model where the process component is a degenerate
probability distribution and thus collapsed into the likelihood. In both the homogenized
and non-homogenized cases, we use a vague Gaussian prior on the diffusion coefficients
d ∼ N(1,10002I). Alternatively, a truncated Gaussian or other prior with positive support
could be used for d, however, in this case for our simulation, the chosen d values were
sufficiently far from the physically limited zero lower bound and thus the posterior dis-
tributions will not be affected by the unconstrained prior. For real data analysis, a model
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Figure 1. (a) Spatial landscape (x-axis) with ecological diffusion coefficients (y-axis) shown in solid (δ) and
dashed (δ̄) where the averaging is one thirtieth of the spatial domain or two units of space in this case. (b) Forward
simulation of ecological diffusion with u(x, t) shown on the y-axis, through space (x-axis) and over time (gray
shading). Lighter shading represents the state of the system at earlier time points, whereas darker shading repre-
sents later times. Note that the initial state u(x,0) was specified with population mass in the middle of the spatial
domain, hence the population is spreading out based on the landscape and δ. (c) Forward simulation of c(x, t)

via plain diffusion, shown on the same spatial domain. (d) PDE approximation, u0(x, t), over time as recovered
from c(x, t) and δ. (e) Simulated data, N(x, t) ∼ Pois(u(x, t)), where the lines represent a set of discrete counts
of “organisms” (i.e., observations) simulated using the hierarchical model.



M. B. HOOTEN, M. J. GARLICK, AND J. A. POWELL

with positive support on d might be warranted. In this non-hierarchical setting, the ratio
of observations to parameters is quite high (i.e., 200 to 1) and thus there will be plenty
of information to estimate d despite their vague proper prior. In the hierarchical setting, a
more precise prior may be useful for improving identifiability.

In this example, we wish to compare the regular (or non-homogenized) and homoge-
nized PDEs in terms of the statistical inference they provide and their computational ef-
ficiency, thus we consider two separate statistical models. In this case, we assume that an
aggregated spatio-temporal point process is observed with measurements corresponding to
animal abundance in space over time (the vector Nt ). The inhomogeneous point process in
our example represents animal locations on a landscape and when these points are aggre-
gated over a contiguous set of grid cells (i.e., discrete spatial support), the likelihoods for
the regular model and homogenized model can then be expressed as Poisson (e.g., Warton
and Shepherd 2010; Aarts, Fieberg, and Matthiopoulos 2012):

N(t) ∼ Pois(f
(
u(t − �t), δ(d)

)
, (3.1)

and,

N(t) ∼ Pois
(
fh

(
u0(t − �t), δ̄(d)

))
, (3.2)

∀t , where f and fh correspond to the original and homogenized PDE solvers, respectively.
Conditioning on the initial state (i.e., u(0)) and no-flux boundary conditions, we then

seek the posterior distribution for the diffusion coefficients from each model, both of which
are conditional distributions of the form: [d | {N(t),∀t}]. Due to the nonlinearities in the
PDE solver as well as the specific forms of the likelihood and prior, the posterior dis-
tribution will not be conjugate, and thus, not analytically tractable. Following the basic
approach outlined in the previous section, we constructed an MCMC algorithm to sample
from the posterior using Metropolis–Hastings updates for the diffusion coefficients d. This
algorithm was developed using the R Statistical Computing Environment (R Development
Core Team 2012).

For this simulation study, we sampled L = 500 realizations of N(l)
t , for l = 1, . . . ,L

from the “true” model and then fit both the original and homogenized statistical PDE mod-
els to each of the data sets by obtaining 5000 MCMC samples (assessing convergence
visually and discarding the first 1000 MCMC samples as the burn-in). The resulting chains
for each model converged rapidly, though we noticed improved mixing in the case of the
homogenized PDE model. We attributed this to the improved stability of the plain dif-
fusion solver as compared with the ecological diffusion solver. Table 1 summarizes our
simulation-based findings pertaining to the bias and credible interval coverage of the dif-
fusion coefficients using both models. In this case, both models captured the truth well and
demonstrated very little bias, while the 95 % credible intervals for each of the diffusion
coefficients had very close to the correct coverage.

In terms of computational performance, the homogenized PDE model took only 40 % of
the time it took the original PDE model to be fit (the entire simulation study took approxi-
mately 14 hours for both models combined, on a 6-Core 2.93 GHz Processor Workstation
with 32 GB of RAM). It should be noted that the gain in computing efficiency is increased
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Table 1. Marginal posterior bias and 95 % credible interval coverage for each of the ecological diffusion co-
efficients d resulting from both the model fit using the original PDE (u) and the homogenized PDE
(u0).

Parameter Truth Original bias (95 % CI coverage) Homogenized bias (95 % CI coverage)

d1 4 0.062 (0.931) 0.096 (0.929)
d2 5 0.024 (0.939) 0.018 (0.958)
d3 6 0.043 (0.946) −0.028 (0.946)

as the extent of averaging increases. That is, in this case, we only averaged over one thirti-
eth of the spatial domain. Through simulation we also evaluated the change in computation
time as a function of both the change of support for averaging and the magnitude of the dif-
fusion coefficients (i.e., max(δ)). The latter is important for the stability of the numerical
PDE solver being employed; in this case, the solver is a centered difference equation. These
simulation results indicated that the computational savings generally improve with larger
diffusion coefficients and larger changes in support. Specifically, in this 1-D example, the
improvement in computational efficiency is asymptotic in both the change of support and
increase in diffusion coefficients (i.e., increasing to an upper bound) and thus the best we
can do with homogenization is an algorithm that is 5 times faster. In the 2-D spatial setting,
we can improve on that by a power of two (Garlick, Powell, and Hooten 2011).

4. APPLICATION: SPREAD OF MOUNTAIN PINE BEETLE

4.1. BACKGROUND

The mountain pine beetle (MPB, Dendroctonus ponderosae) infests and kills Pinus host
trees throughout western North America; rapid population growth and inherent positive
feedbacks are hallmarks of this economically important species (Raffa et al. 2008). Un-
like many phytophagous insects, successful MPB reproduction almost always results in
death of all or part of the host. Host trees, however, have evolved effective resin response
mechanisms to defend themselves against bark beetle attacks (Raffa, Phillips, and Salom
1993). At low population densities trees with less defensive capacity, and hence less food
resources, are selected. Once populations reach outbreak densities, however, MPB can suc-
cessfully overcome all suitable hosts (Boone et al. 2011).

MPB has been successful across a broad latitudinal and elevational thermal regime as
evidenced by the numerous population outbreaks recorded during the past 100 to 150 years
across western North America (Crookston, Stark, and Adams 1977; McGregor 1978;
Perkins and Swetnam 1996; Alfaro et al. 2004). The severity and distribution of some
recent outbreaks, however, differ from what can be inferred from historical records. In-
creasing temperature associated with climate change is believed to be a significant factor in
recent outbreaks, with positive influences on development timing and cold survival (Logan
and Powell 2001; Raffa et al. 2008; Sambaraju et al. 2012). Models describing the effect of
temperature on MPB developmental timing and survival have been developed (Bentz, Lo-
gan, and Amman 1991; Gilbert et al. 2004; Régnierè and Bentz 2007), and have been used
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to analyze MPB population response to historic and future climate regimes (Bentz et al.

2010; Safranyik et al. 2010). Powell and Bentz (2009) combined temperature-driven phe-

nology, a controller of adult emergence timing, with a daily threshold of beetles required to

overwhelm defenses of new host trees under attack (i.e., Allee effect) to produce a model

for predicting local population growth rate within a watershed. Using observed phloem

temperatures to drive their mechanistic model, year-to-year details of density-dependent

growth and the transition from incipient to epidemic levels of MPB were predicted. This

effort provided an accurate description of MPB population growth through time, yet the

spatial behavior of MPB eruption and spread remains undescribed.

One poorly-understood aspect of MPB spatial ecology is dispersal. Proliferation of

small spots of infested trees is largely dependent on short-range movement under the

stand canopy, conditioned by host tree availability and size, MPB population levels,

weather, and behavior-modifying chemicals (Mitchell and Preisler 1991; Safranyik et

al. 1992). Through a chemically-mediated synergistic reaction with host defensive com-

pounds, MPB release aggregation pheromones that attract additional beetles (Pitman 1971;

Hughes 1973) resulting in a mass attack on a single focus tree. Individual trees are finite

resources that can be overexploited, however, and it is therefore advantageous to redirect

attacks. A complex suite of derived compounds and behaviors have evolved resulting in

a close-range redirection of responding beetles to nearby trees (Borden et al. 1987; Mc-

Cambridge 1967; Bentz, Powell, and Logan 1996). A spatially explicit model describing

host tree switching at <10 m scales was developed by Powell, Logan, and Bentz (1996),

parameterized using the spatio-temporal pattern of attacked trees in a stand (Biesinger et

al. 2000), and used in an analysis to test hypotheses of MPB outbreak ecology (Logan et

al. 1998). These modeling results support the notion that overall dispersal of MPB and

subsequent successful attacks depend directly on host density.

Ignoring the effects of behavior-modifying chemicals, Heavilin and Powell (2008) fit

deterministic integrodifference equation models to USDA Forest Service Aerial Detection

Survey (ADS) data that describes spatial patterns of MPB killed trees. The models incorpo-

rated density dependence and possible Allee effects at 30-m resolution using type II and III

functional responses, and described MPB dispersal via Gaussian and exponential dispersal

kernels (Heavilin, Powell, and Logan 2007). The models predicted that mean dispersal dis-

tances were between 15 and 50 meters, a finding similar to other studies (Safranyik et al.

1992; Robertson, Nelson, and Boots 2007). No parameters tested reconciled predictions

with observed spatial pattern at any scale, suggesting that dispersal cannot result from a

random walk with fixed step sizes. Although more than three quarters of new attacks occur

within 100 m (Robertson, Nelson, and Boots 2007), a significant aspect of MPB dispersal

is long distance movement (> 2 km, Robertson et al. 2009), contributing to the develop-

ment of new spots. Localized infestations can erupt in areas geographically disjunct from

other spots (Aukema et al. 2006). Understanding how MPB disperse is a critical element

in understanding outbreak progression, and this information would allow for more robust

forecasting across the entire range of mountain pine beetle.
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4.2. SAWTOOTH STUDY AREA

The Sawtooth National Recreation Area (SNRA) in central Idaho was chosen as our
study area for several reasons. A single host, lodgepole pine, predominates and grows in
stands with relatively homogeneous demographics at the lowest elevations; host demo-
graphics are consistent across the valley due to historical disturbance patterns. Lodgepole
pine stands in the SNRA are within a coherent geographic unit, bounded by 3000+ meter
mountains on three sides, minimizing factors such as dispersal and immigration that have
been shown to be important in MPB outbreaks (Aukema et al. 2008). The valley opens
to the north, cross-wise to prevailing weather patterns, and is small enough that the entire
valley experiences the same general climate. Consequently, per-capita growth rates are ap-
proximately constant (in space), although they vary significantly from year to year (Powell
and Bentz 2009)

The study area is a rectangular region from approximately 44◦22′N to 43◦44′N
(∼60 km) and 115◦10′W to 114◦28′W (∼30 km), comprising over 1800 km2. The land-
scape is characterized by the Sawtooth valley and the surrounding mountains, nearly all
of which are administered by the SNRA, Sawtooth National Forest. Elevation ranges
from 1651 m to 3605 m; vegetation types range from shrub and grasslands to conifer-
ous forests dominated by Douglas fir (Pseudotsuga menziesii), subalpine fir (Abies lasio-
carpa), and lodgepole pine and whitebark pine (Pinus albicaulis). Extensive barren areas
exist above tree-line at the highest elevations. The climate is characterized by very cold
winters and mild summers. Extensive studies on MPB phenology and life history have
been conducted within the study area boundary (Bentz and Mullins 1999; Bentz 2006;
Powell and Bentz 2009).

4.3. PINE STEM DENSITY AND AERIAL DETECTION SURVEY DATA

Spatially explicit data sets of pine density at 30-m resolution were derived for both
study areas using existing geospatial data sets of vegetation composition and structure
(Crabb, Powell, and Bentz 2012). For the Sawtooth study area forest density (trees per acre
>2.54 cm diameter at breast height (DBH)) at 250 m resolution developed by the USDA
Forest Service FIA (Blackard et al. 2008) were downscaled to 30-m resolution using data
from the inter-agency Landscape Fire and Resource Management Planning Tools Project
(LANDFIRE).

The USDA Forest Service Forest Health Protection (FHP) branch conducted annual
ADS from fixed-wing aircraft between 1989 and 2010. During ADS flights, trained ob-
servers collect and manually record data on a geo-referenced map based on visual inspec-
tion of forest structure, tree species, and foliage color (Halsey 1998). Observers delineate
areas of trees with faded foliage, estimating attack and tree mortality caused by MPB the
previous year. ADS data sets include ‘damage’ polygon shapefiles with metadata describ-
ing the estimated number of trees per acre affected and a code for the damage causal
agent(s) (DCA). Only areas with at least 20 trees per hectare were mapped. These georef-
erenced data serve as our source of information on the spatial location, timing, and intensity
of MPB impact in the Sawtooth study area. Rasters of total MPB impact by year were cre-
ated by summing MPB impacts across observations for each polygon, then converting the
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polygons to rasters. The rasters were produced at a 30 meter resolution and were kept in
the same coordinate system as the original ADS shapefiles.

To develop one-dimensional slices we chose a transect 6 kilometers wide (east-west)
and 60 kilometers long (north-south), running along the western side of the Stanley Valley
and intersecting the majority of MPB impact from 2000 to 2005. The strip is bounded
on the east by the valley bottom, comprised of hay fields and range land with few or no
hosts; on the west the strip is bounded by the ascending slopes of the Sawtooth range
itself, thus giving natural boundaries. Average host abundances (ranging from 131 to 731
pine stems per hectare) were calculated as the mean of each row in the host raster and
referred to as w(x) (Figure 2a) in what follows; total impacts were calculated by summing
the number of impacted stems from ADS data, again along rows. Over the course of these
six years, impacts varied from a minimum of zero to a maximum of 5009 stems in an
east-west transect; we use these impacted stem counts as a surrogate for MPB abundances
(N(x, t), Figure 2b) in what follows. In total, there are 2048 north-south 30 meter spatial
units annually over a six year period (2000–2005). This results in 12,288 total response
observations.

4.4. MPB MODEL

Recall the original ecological diffusion equation (1.2) described in the previous sections:

∂u(x, t)

∂t
= ∂2

∂x2

(
δ(x)u(x, t)

)
.

This deterministic model describes a mechanism for the spread of a population of an-
imals through space while allowing them to congregate in areas where motility is low
(e.g., preferable habitat). In the case of the MPB epidemic, the MPB population is not
only spreading out, but also growing. Thus, consider an ecological diffusion model with a
growth component

∂u(x, t)

∂t
= ∂2

∂x2

(
δ(x)u(x, t)

) + γ (t)u(x, t). (4.2)

This model is a generalization of (1.2), containing a growth parameter γ (t) that is allowed
to vary over time, and would normally require a new analytical homogenization procedure
(as in Section 2.1). An alternative specification would allow the growth parameter γ (x) to
vary in space rather than time, and though that model is not necessary for our MPB exam-
ple, we present the details of the homogenization procedure in Supplementary Appendix A
for the interested reader. In the case of the MPB model (4.2), however, a very useful result
arises if we introduce a change of variables such that

z(x, t) = exp

(∫ t

0
γ (ν) dν

)
u(x, t). (4.3)

Then the following PDE for the new variable z results:

∂z(x, t)

∂t
= ∂2

∂x2

(
δ(x)z(x, t)

)
. (4.4)
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Figure 2. (a) Host abundance (i.e., w in the model) oriented such that North is right and South is left on the
x-axis of the figure. (b) MPB abundance (i.e., N ); shading represents year (light= 2000, dark= 2005). (c) Scaled
MPB abundance (Ñ ). (d) Posterior mean MPB motility (i.e., spatial diffusion coefficients δ).
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Note that this is exactly the ecological diffusion PDE (1.2) for which we have already
derived the appropriate homogenization procedure. We merely need to consider the new
variable z instead of the population intensity u directly. If we are interested only in infer-
ence on motility, then the new PDE (4.2) and the change of variables (4.3) implies that we
can standardize our original MPB abundance data N(x, t) such that the growth signal is
removed. In effect, this rescales each year of data so that they are on the scale of year 2000
total abundance levels; this is the first year for which we have data. In matrix notation, the
resulting statistical model for the standardized MPB abundance data Ñ(x, t) (Figure 2c)
using homogenization can be written as:

Ñ(t) ∼ Pois
(
fh

(
z0(t − �t), δ̄(w,β)

))
, (4.5)

where, fh is the homogenized PDE solver for (4.4) and we let δ(x) = exp{β0 + β1w(x)},
thus allowing the motilities (or diffusion coefficients, δ(x)) to depend on host abundance
w(x). We used a multivariate Gaussian prior for β = (β0, β1)

′ with mean vector equal to
zero and covariance matrix equal to 100 × I.

4.5. RESULTS

The statistical ecological diffusion model (4.5) described in Section 4.4 was fit to the
scaled MPB data (Figure 2c) using the MCMC algorithm from Section 2.3 with 20,000
MCMC iterations (assessing convergence visually and discarding the first 2000 MCMC
samples as burn-in). Due to the large size of the MPB data set and necessary computational
integration, we used homogenization with a spatial averaging window of (1/256)th of the
spatial domain (or 8 spatial units in this case). The posterior histograms for β shown in
Figure 3 indicate the effect of host abundance (w) on MPB motility (δ).

The intercept coefficient β0 (posterior mean: 4.102) influences the overall motility while
β1 (posterior mean: −0.012) indicates that host abundance (w) is negatively related to
MPB motility. That is, when the amount of susceptible forest is large, the MPB motilities
are slower, allowing them to aggregate in desirable areas. The effect of host abundance (w)
on MPB motility can be visualized by assessing the posterior mean for δ (Figure 2d). In
this case, it is evident that the motilities δ are negatively related to host abundance w (by
comparing plots (a) and (d) in Figure 2). This supports the findings of previous modeling
efforts that link MPB dispersal to host abundance (e.g., Powell, Logan, and Bentz 1996;
Logan et al. 1998; Biesinger et al. 2000) but in a spatially explicit context.

5. DISCUSSION

In summary, by taking a mathematical approach to change of support in PDE models,
we can obtain similar statistical inference on parameters controlling the dynamics of the
process with a fraction of the computational effort. Though traditionally employed in engi-
neering settings, the specific type of singular perturbation theory known as homogenization
has both a statistical interpretation and utility. Homogenization allows for an accurate and
efficient implementation of PDE models while still accommodating small scale structure in
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Figure 3. Posterior histograms of the regression coefficients β influencing the diffusion coefficients δ. The
posterior mean is represented by the bold vertical line on each plot.

the underlying environment and is harmonious with existing multi-scale statistical meth-
ods. In the approximation procedure for ecological diffusion, a natural, but uncommon,
statistical quantity arises as a means for changing the support (i.e., the harmonic mean),
and, as a byproduct, we are left with a smoother dynamical system that can be imple-
mented on a coarser spatial scale. Through simulation, we have demonstrated the use and
effectiveness of this method and illustrated the potential savings in computation.

We have demonstrated, with both simulated and real data involving large-scale popula-
tion spread, how statistical dynamic models can be fit over extensive spatial support using
large data sets via the homogenization-based upscaling. Our example pertaining to MPB
spread links insect dispersal to host abundance using well-founded mechanistic dynam-
ics in a statistically rigorous manner. In the current age of digital information, a data set
like ours which is on the order of tens of thousands of observations could only be con-
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sidered moderately large; however, it is important to remember that the data are coupled
with a complicated dynamic model that may require hundreds or thousands of computa-
tional steps to integrate the process forward in time 6 years. In our case, the underlying
process itself is massive and could not be explicitly modeled without some creative statis-
tical dimension reduction. Fortunately, homogenization provides an optimal computational
upscaling method that is model-specific but retains the small-scale variability appearing in
the data.

In terms of potential extensions to this methodology, choosing the optimal degree of
averaging itself (the ε in our specification) is a subject of ongoing research. The optimal
scale over which to average is a function of both desired computational savings and loss
associated with the estimation of model parameters. Most studies would put a much higher
weight on estimation accuracy than on computational savings, thus, a potential method that
could be employed is to first choose a threshold or tolerance on the approximation error
‖u(x, t) − u0(x, t)‖, for all x and t , then find the smallest ε that meets the tolerance based
on exploratory forward solution of both the original and homogenized PDEs. A promising
alternative might be to “model” the ε such that the data are used to help find the scale of
averaging that provides the maximum information about the parameters while minimizing
the computational time.

A distinct but related set of alternative approaches for statistical inference using com-
plicated deterministic process models are the focus of an active area of recent research.
One such method is referred to as “Bayesian melding,” and employs a clever trick involv-
ing implicit and explicit priors on the model inputs and outputs and is implemented using
a form of sampling-importance-resampling algorithm (e.g., Poole and Raftery 2000). An-
other popular approach to fitting computer models is through the use of first-order (e.g.,
Hooten et al. 2011) and second-order (e.g., Higdon et al. 2008) statistical emulators. These
methods allow for inference through an a priori computer experiment and often some mod-
eling of the input–output relationships in a spectral domain. The homogenization approach
described here is essentially an emulator. However, rather than phenomenologically mim-
icking the diffusion model, it actually custom tailors a model-specific mechanistic emulator
that retains small-scale structure in the output; this is difficult to achieve using Gaussian
process emulators. The model-specific nature of the homogenization approach can also be
a disadvantage in some situations. It is not a black box procedure, but rather a custom
procedure that requires analytical analysis prior to model fitting. Therefore, it may not be
appropriate nor possible in all settings, such as highly complicated agent-based models.

Finally, it is important to note that perturbation theory is applicable to most differential
equations. In fact, in the epidemiological/ecological setting, we have found that a similar
approach yields advantageous results in the implementation of 2-D ecological diffusion
PDEs with growth terms as well as more complicated coupled PDE models (Garlick, Pow-
ell, and Hooten 2011). Similarly, the diffusion parameters that govern the rates of move-
ment for individuals could also vary in time (as indicated in (1.2)) and homogenization
can be useful for finding optimal upscaling statistics in the temporal domain as well. Other
applications of the methodology presented here include modeling of spatio-temporal at-
mospheric and environmental processes as well as epidemiological processes where the
spread of disease is a primary concern.
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