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Abstract. Ecologically meaningful and scientifically defensible nutrient criteria are needed to protect the
water quality of USA streams. Criteria based on our best understanding of naturally occurring nutrient
concentrations would protect both water quality and aquatic biota. Previous approaches to predicting
natural background nutrient concentrations have relied on some form of landscape categorization (e.g.,
nutrient ecoregions) to account for natural variability among water bodies. However, natural variation
within these regions is so high that use of a single criterion can underprotect naturally occurring low-
nutrient streams and overprotect naturally occurring high-nutrient steams. We developed Random Forest
models to predict how baseflow concentrations of total P (TP) and total N (TN) vary among western USA
streams in response to continuous spatial variation in nutrient sources, sinks, or other processes affecting
nutrient concentrations. Both models were relatively accurate (root mean square errors ,12% of the range
of observations for independent validation sites) and made better predictions than previous models of
natural nutrient concentrations. However, the models were not very precise (TP model: r2

= 0.46, TN
model: r2

= 0.23). An analysis of the sources of variation showed that our models accounted for most of the
spatial variation in nutrient concentrations, and much of the imprecision was caused by temporal or
measurement variation. We applied 2 methods to determine upper prediction limits that incorporated
model error and could be used as site-specific nutrient criteria. These site-specific candidate nutrient
criteria better accounted for natural variation among sites than did criteria based on regional average
conditions, would increase protection for streams with naturally low nutrient concentrations, and specified
more attainable conditions for those streams with naturally higher nutrient concentrations.

Key words: models, nitrogen, nutrient concentrations, nutrient criteria, phosphorus, Random Forests,
reference condition, streams, United States, water quality.

Nutrients are among the most important stressors
to aquatic ecosystems and lead to eutrophication of
local water bodies and downstream lakes and
estuaries. Nutrient pollution has increased markedly
over the last 50 y, with .50% of stream and 78% of
coastal waters now exhibiting eutrophication (USEPA
2011). To prevent further harm and to set standards
for restoration, the US Clean Water Act requires that
criteria be established to protect the designated uses
of each water body. Criteria can be in narrative or
numeric form, but the USEPA has long recommended
use of numeric nutrient criteria to identify the level of
impairment, prioritize water bodies for management,
and set remediation goals for individual water bodies
(USEPA 2011). Numeric criteria based on naturally
occurring nutrient concentrations would protect all
uses, but are especially important for protecting those

aquatic biota that are adapted to specific trophic
conditions associated with different nutrient environ-
ments (Dodds 2007). Criteria also should be applica-
ble at the scale used for water-quality management,
the individual water body. The challenge in estab-
lishing such criteria lies in estimating the naturally
occurring, reference concentrations expected at indi-
vidual water bodies.

Several approaches have been developed to predict
background nutrient conditions and define criteria.
One approach is to base a criterion on some percentile
value of the distribution of nutrient concentrations
observed at reference sites within a region (e.g., 75th

percentile, USEPA 2000; 86th percentile, Suplee et al.
2007). Another is to model background nutrient
concentrations as a function of ecoregion, runoff,
and atmospheric deposition (for N) or in-stream loss
(for P) (Smith et al. 2003). In a 3rd approach, Dodds
and Oakes (2004) modeled nutrient concentrations as
a function of landuse disturbance within separate
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ecoregions and depended on the ecoregions to control
for natural variation. They predicted naturally occur-
ring concentrations by applying the model with
disturbance set to 0 at altered sites because distur-
bance was used as a predictor in the model. These
approaches all control for natural variation in nutrient
concentrations caused by differences in geology,
climate, or vegetation by classifying sites into nutrient
ecoregions that separate sites spatially into groups
based on environmental similarities. However,
whether regionalizations control sufficiently for nat-
ural variation in water chemistry and other ecosystem
attributes is questionable (Hawkins et al. 2010).

Even when landscape classifications are based on
known environmental drivers, they often account for
insufficient amounts of natural variation in nutrient
conditions to allow prediction of expected natural
nutrient concentrations. Herlihy and Sifneos (2008)
concluded that the 14 nutrient ecoregions covering
the contiguous USA do not control natural variability
well enough to allow establishment of regional
criteria, specifically in the Pacific Northwest. Total P
(TP) and total N (TN) concentrations varied §33

even among reference sites within some of the finer-
resolution level-III ecoregions (85 regions for the
contiguous USA; fig. 5 by Herlihy and Sifneos 2008).
Cheruvelil et al. (2008) found that multiple regional-
ization schemes were ineffective in partitioning
natural variation in TP and TN among minimally
disturbed lakes in Michigan. Robertson et al. (2006)
noted several inherent problems in using ecoregions
to account for variation, including the difficulty of
developing a single classification that adequately
parses natural variation of multiple chemical constit-
uents when each constituent responds to a different
set of processes. They also noted that ecoregions are
often confounded with land use because human
development occurs disproportionately in ecoregions
with favorable environmental attributes. For example,
if the amount of agriculture is correlated with natural
differences in soil and vegetation type, then regions
delineated based on soils or vegetation are likely to
differ in water chemistry because of differences in
land use and variation in natural features. Identifying
appropriate background concentrations in streams
that flow across multiple regions and assigning
criteria to such streams is problematic (Dodds and
Oakes 2004).

Other investigators have tried using typological or
reach-level classification approaches to control for
natural variation in nutrient concentrations (Snelder
et al. 2004, Robertson et al. 2006, Herlihy and Sifneos
2008). These typologies were more effective than
ecoregions, but nutrient concentrations still varied up

to an order of magnitude within some classes. Many
of the environmental drivers of water chemistry vary
continuously (e.g., climate, topography, vegetation),
so any discrete classification imposed on these
gradients must contain a certain amount of within-
class variation.

If large amounts of unexplained natural variation
occur within landscape or waterbody classes, estab-
lishing criteria that are both attainable and protective
across the range of expected conditions is difficult.
Any criterion chosen from across a large range of
possible natural conditions will be underprotective
for some sites and overprotective for others. An
example of underprotection would be a site with very
low natural nutrient concentrations in a highly
variable region with a criterion significantly higher
than that site’s natural background condition. Such a
site would have to be altered substantially before the
nutrient concentrations violated the criterion and
prompted action. Ice and Binkley (2003) described
an example of overprotection in which the nutrient
concentrations found in 3 streams draining undis-
turbed forest watersheds would exceed regional
criteria, a result indicating that these criteria were
set too low. They concluded that ‘‘Water quality
standards will be acceptable only when they reflect
what is physically achievable…’’ (Ice and Binkley
2003, p. 27). Given the monetary and societal costs
associated with restoring nutrient-enriched streams, it
is critical that management decisions be guided by
achievable and reliable criteria.

Nutrient criteria should be based on the best
estimates of expected natural or near-natural condi-
tions, but making these estimates is difficult given the
complex environmental processes that influence
nutrient concentrations. Smith et al. (2003) developed
regression models to predict natural background
nutrient concentrations, but because they lacked
access to information on vegetation, soils, or geology,
they relied on ecoregions to account for all of these
environmental effects. Ice and Binkley (2003) noted
that although ecoregions explain some variation in
nutrient concentrations, they do not account for the
influence of finer-scale factors, such as geology or
forest type. Dodds and Oakes (2004) called for
consideration of spatially variable characteristics,
such as geology, slope, and drainage area, to better
account for natural variation in water chemistry
within ecoregions. New spatial data describing
environmental factors that can influence water chem-
istry have been produced (Olson and Hawkins 2012),
and new modeling techniques that account for
nonlinear and interacting predictors have been devel-
oped (e.g., Random Forests and Artificial Neural
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Networks). These advancements in data and model-
ing provide an opportunity to develop models in
which stream nutrient concentrations are predicted as
joint functions of potential nutrient sources and sinks
without the need to rely on spatial classifications like
ecoregions.

Our main objectives were to develop models to
predict baseflow nutrient concentrations for individ-
ual stream reaches and then to identify site-specific
nutrient criteria based on these model predictions. We
first describe how we modeled site-specific variation
in naturally occurring TN and TP concentrations.
Even the most pristine streams receive some atmo-
spheric deposition from both natural and anthropo-
genic sources, so we did not attempt to parse the
effects of anthropogenic deposition from estimates of
naturally occurring nutrients. We then describe 2
methods for estimating prediction error and demon-
strate how these methods can be applied to estimate
the highest probable naturally occurring nutrient
concentration at a site, i.e., a candidate site-specific
nutrient criterion.

Methods

Nutrient concentration data

We assembled a data set of TP and TN concentra-
tions from samples collected during baseflow condi-
tions by multiple agencies from 823 reference-condi-
tion streams across the western USA (Fig. 1, Table 1).
Samples were collected from wadeable streams from
almost all environments occurring in the western USA
including mountains, deserts, coastal areas, and the
Great Plains. Baseflow conditions at the time of
sampling were either determined from gauge records
or were verified in the field by individual crews.
Sample TP and TN concentrations were measured
from unfiltered grab samples by persulfate oxidation
and colorimetry (TP and TN) or calculated as the
sum of total Kjeldahl N plus NO3

2 and NO2
2 (TN).

Laboratory precision was not available for all data,
but detection limits were generally 2 to 10 mg/L for TP
and 10 to 60 mg/L for TN. We used concentrations
derived from individual grab samples instead of long-
term averages or estimates of nutrient loads despite
the noisiness of this type of data (Knowlton and Jones
2006) because most regulatory agencies use estimates
from grab samples in their assessment programs.
Also, the number of sites with grab-sample data far
exceeded the number of sites that had the frequent,
multiple measurements needed to calculate loads. The
data from many grab samples allowed us to develop
models whose scope included a broad range of
environments. Sites were originally identified as

being in reference condition by the sampling agency,
but to ensure consistency, we screened sites to verify
that their catchments had little to no human distur-
bance except for atmospheric deposition (i.e., all sites
had ,10% agriculture or urban land use, and 95% of
sites had ,2% of either land use; see Olson and
Hawkins 2012).

Environmental predictors

We used a geographic information system (GIS) to
measure spatial variation in factors potentially affect-
ing nutrient concentrations among sites. These factors
include direct effects associated with spatial variation
in sources (e.g., rock P, N deposition) and sinks (e.g.,
P deposition in lakes, removal of N by denitrification).
We also measured factors that could indirectly affect
nutrient concentrations (e.g., factors associated with
evaporation or aquatic and terrestrial nutrient pro-
cessing rates) and temporal data describing seasonal
changes in climate or vegetation. Our measurements
of spatial data included average upstream catchment
conditions and the value of each variable at the
sampling point. We delineated catchments by apply-
ing the Multi-Watershed Delineation Tool (Chinnaya-
kanahalli 2006) to 30-m Digital Elevation Models. In
total, these measurements produced 182 potential
predictor variables for each site. We describe the
major categories of predictors and the specific
predictors selected for the final models below. The
full list and descriptions of predictors is available in
Table S1 (available online from: http://dx.doi.org/10.
1899/12-113.1.s1).

Data on potential sources of P and N include
descriptions of underlying geology, amounts of
atmospheric deposition, and distributions of N-fixing
plants. All geologic assessments were derived from
the Preliminary Integrated Geologic Map Databases
for the USA (Ludington et al. 2007, Stoeser et al. 2007).
Basalts can be sources of elevated stream P (Meybeck
1982), so we measured the % of each catchment
underlain by volcanic rocks. We also measured the
average bedrock composition of P2O5, N, CaO, MgO,
and S in each catchment (see Olson and Hawkins 2012
for details). We estimated the amount of bedrock
NH4

+ because bedrock N in the form of NH4
+ is more

easily weathered than organic forms (primarily
kerogen; Holloway and Dahlgren 2002). NH4

+ exists
in other rock types, but we based our estimates of
NH4

+ rock content only on metamorphic rocks
because mineralization of N is associated with
diagenesis and metamorphism (Holloway and Dahlg-
ren 2002). We extracted bedrock N values from all
geologic map units associated with metamorphic
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rocks and applied this value as our estimate of
bedrock NH4

+ concentration. Atmospheric deposition
was measured as the long-term (1994–2006) average
wet-deposition concentrations of NO3

2, Ca, Na, and

SO4
22 from the National Atmospheric Deposition

Program National Trends Network. Dry deposition
can be a major source of N, so we also estimated
catchment average annual dry + wet TN deposition.

FIG. 1. Map of 782 training and 41 validation sites sampled for total P (TP), total N (TN), or both by ecoregion and state.

TABLE 1. Sources of water chemistry data. US EPA = US Environmental Protection Agency, USGS = US Geological Survey.

Data source No. sites Years collected Location/contact

Arizona Department of Environmental Quality 25 1994–2008 Patrice Spindler
California Department of Fish and Game 46 2003–2008 Andrew Rehn
Eastern Sierra Nevada Dataset 22 2000–2002 Dave Herbst
US EPA Environmental Monitoring and Assessment

Program
337 2000–2004 http://www.epa.gov/emap2/

USGS National Water-Quality Assessment Program 41 1973–2008 http://water.usgs.gov/nawqa/
New Mexico Environment Department 25 1999–2007 Shann Stringer
Oregon Department of Environmental Quality 67 1992–2002 Shannon Hubler
Utah State University 255 2001–2003 John Olson
USGS National Water Information System 5 1981–1995 http://waterdata.usgs.gov/nwis
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We obtained these estimates by applying the Water-
shed Deposition Tool to calculate long-term average
deposition from output of the Community Multiscale
Air Quality model (CMAQ; Schwede et al. 2009). N-
fixing plants can be the dominant source of N in some
streams (e.g., Compton et al. 2003), so we developed
several predictors describing the potential distribu-
tion of N-fixing woody plants identified by the US
Department of Agriculture PLANTS Database as
naturally occurring in the western USA. These plants
included Alnus incana, Alnus rubra, Ceanothus veluti-
nus, and Prosopis glandulosa. We used the LANDFIRE
Biophysical Settings Model descriptions and layers,
which together describe presettlement vegetation
patterns, to develop maps of the potential distribu-
tions of these species under natural conditions. First,
we identified which LANDFIRE Biophysical Settings
Model descriptions listed each species as either
occurring or dominant (LANDFIRE 2011b). Then,
we extracted those grid cells associated with the
identified Biophysical Settings Model from the
LANDFIRE Biophysical Settings layer (LANDFIRE
2011a) to create layers describing the expected
locations at which each species would be either
present or dominant in our study area. We also
calculated % cover of A. rubra for each catchment
from estimates of current forest composition derived
from Gradient Nearest Neighbor imputation (Oh-
mann et al. 2007) of areas across the Pacific Northwest
by the Landscape, Ecology, Modeling, Mapping, and
Analysis project (LEMMA 2011).

Potential sinks for nutrients include uptake or
retention by vegetation, soils, lakes, or wetlands;
denitrification; and chemical precipitation or adsorp-
tion. To characterize spatial differences in potential
vegetative uptake, we used long-term (2000–2009)
average MODIS satellite Enhanced Vegetation Index
(EVI) values (Huete et al. 2002) as a proxy for spatial
variation in plant biomass. Because MODIS EVI data
are available in weekly increments starting in 2000
we could potentially have used it to characterize
temporally specific differences in vegetative uptake
(i.e., EVI for the specific time of the sample or
increase in EVI in the previous month). However
10% of our data were collected before MODIS
became operational, so we relied on day of year of
the sample to account for seasonal variations in
vegetative uptake. We characterized major differenc-
es in vegetation composition with data from the 2001
National Land Cover Dataset (NLCD; Homer et al.
2004). We used maps of soil organic C (SOC; Global
Soil Data Task Group 2000) and soil organic matter
(SOM; NRCS 2011) content to characterize the
potential release or immobilization of nutrients by

soils caused by microbial uptake or chelation
associated with SOC or SOM. We described potential
differences in nutrient retention by lakes and
wetlands by measuring the % of each catchment
classified as lake, wetland, or both (i.e., water body)
in both the NLCD and the National Hydrography
Dataset (NHD; USGS 2006). We assessed the size of
the largest water bodies in each catchment and the
amount of flow routed through these water bodies in
the NHD data. We also measured environmental
variables associated with differences in conditions
favorable to denitrification, such as soil bulk density
(lower pore connectivity with increased density
creates more anaerobic sites) or the amount of
surface–subsurface hydrologic exchange in streams
(increased exchange brings more N in contact with
hyporheic waters). We obtained soil bulk density
from the US General Soil Map (NRCS 2011). We
characterized surface–subsurface hydrologic ex-
change by both average catchment hydraulic con-
ductivity and an index of groundwater velocity
estimated with the MRI-Darcy model (Baker et al.
2003). The MRI-Darcy model applies Darcy’s equa-
tion within a GIS environment (see Olson and
Hawkins 2012 for details). We also measured other
factors that could potentially influence chemical
precipitation or adsorption of nutrients where spatial
data were available. These variables included the
amount of Ca available from either bedrock or
atmospheric sources that could act as a coprecipitate
with P, and soil pH, which could influence adsorp-
tion or cation exchange.

We used long-term estimates (1971–2000) of
average precipitation, number of wet days, air
temperature, day of last freeze, and relative humid-
ity produced by the Parameter-elevation Regression
on Independent Slopes Model (PRISM; Daly et al.
1994) to estimate the effects of dilution and
evaporative concentration. Temporal variation in
precipitation can influence nutrient concentrations,
so we also measured PRISM monthly mean precip-
itation for the month of the sample, mean precipi-
tation for the month previous to the sample, and
mean annual precipitation for the year previous to
the sample.

We also measured other factors that could poten-
tially affect processing rates or retention or that could
act as proxies for factors we could not measure. These
variables included soil order and properties (e.g.,
available water content, erosion factor, and % hydric
soils), topography (e.g., elevation, relief, and catch-
ment shape), catchment area, Level II ecoregion, and
average channel slope. We also included measure-
ments of other atmospheric deposition components
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not directly related to nutrient concentrations, e.g.,
Mg, Na, Cl, and SO4

22.

Model development and evaluation

We used the nonparametric modeling technique
Random Forest (RF; Breiman 2001) to develop
empirical predictive models. RF models outperform
multiple linear regression models for other water-
chemistry constituents because of their ability to
account for interactions between variables and
nonlinear relationships (Olson and Hawkins 2012).
RF models are ensembles of classification and
regression trees (CART; Breiman et al. 1984). Obser-
vations are recursively split into groups, minimizing
the remaining unexplained variance within each
group. Splits are constructed as a series of binary
rules based on one of the explanatory variables.
CART models are sensitive to small changes in
training data, but RF overcomes this limitation by
growing multiple individual trees using a bootstrap
sample of the training data and a random sample of
the predictors at each split. RF predictions are then
generated by averaging the predictions of all trees.
RF estimates the predictive accuracy of the model
from observations that were excluded from each
bootstrap sample (out-of-bag error) and the impor-
tance of each predictor by measuring how out-of-bag
error changes when each predictor is permuted. We
implemented RF with the R package randomForest
(Liaw and Wiener 2009) to create 1500 trees for each
model. Prediction errors in individual trees caused
by overfitting cancel each other when averaged over
large numbers of trees constructed from random
subsets of both data and predictors, so the resulting
RF prediction does not overfit the data even when a
large number of predictors is used (Breiman 2001).
However, use of parsimonious models and limiting
the number of predictor variables to be calculated are
still desirable. To create the most parsimonious
model and to minimize the number of correlated
predictors, we modeled iteratively and removed
correlated or low-importance predictors until a
model’s out-of-bag error began to increase. We used
partial-dependence plots to visualize relationships
between nutrient concentrations and predictors, and
we removed any predictors for which the direction of
response in nutrient concentrations changed .33

because such patterns are likely to be spurious
relationships. After predictor variables were selected,
we used the tuneRF function to optimize the size of
the random sample of the predictors tried at each
split. We corrected for a small bias inherent in RF
regression models (Zhang and Lu 2012) by applying

the bias-correction function internal to the random-
Forest package.

We used the training (internal) data and an external
validation data set to evaluate model performance.
We selected external validation data prior to model
development by randomly sampling 5% of sites,
stratified by level II ecoregion (CEC 2006) to ensure
that the validation set represented all environments.
Internal evaluations were based on out-of-bag obser-
vations (analogous to cross validation), which al-
lowed us to assess how well the models performed
across the widest range of conditions. External
validation allowed us to assess rigorously the appli-
cability of these models to completely independent
observations. We quantified model performance with
the Nash–Sutcliffe Model Efficiency coefficient (NSE)
and r2 values associated with linear regressions of
observed vs predicted concentrations (Piñeiro et al.
2008). We used an equivalence test to assess model
bias (systematic over- or underprediction) and con-
sistency (deviance between observations and predic-
tions remains constant over their ranges) by testing
whether the regression of observed vs predicted
concentrations had an intercept = 0 and a slope = 1
(Robinson et al. 2005). Intercepts ? 0 indicate model
bias, whereas slopes ? 1 indicate that model
predictions lack consistency across the range and the
model over- or underpredicts at the extremes. The
equivalence test approach reverses the test from a null
hypothesis of agreement between observations and
predictions to a null hypothesis of less than a given
difference. This test shifts the burden of proof to the
model, and rejection of the null hypothesis indicates
predictions are sufficiently similar to the observations
for that particular application. A failure to reject the
null hypothesis (assessed with a = 0.05) indicates
either insufficient evidence of a similarity between
predictions and observations or a true difference. We
considered slopes ranging from 0.75 to 1.25 and
intercepts ranging from 20.25 to 0.25 (i.e., region of
equivalence) to be sufficiently similar based on
previous applications of this method by others.
Instead of applying the equivalence test once, we
used a bootstrap analysis with 10,000 resamples of
predictions and observations to estimate the propor-
tion of results that would fall within the region of
equivalence for both intercept and slope. We also
used the Root Mean Square Error (RMSE) to assess
model accuracy. Last, we compared the performance
of our model with the only other models that predict
background nutrient concentrations across the west-
ern USA, the empirical models developed by Smith
et al. (2003). Smith et al. used regression to predict
transport of nutrients into streams and used the
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SPARROW model to predict nutrient losses during
stream transport. These combined models predicted
flow-weighted nutrient concentrations for individual
reaches, and Smith et al. suggested that these predic-
tions or their regional frequency distributions could
assist in development of nutrient criteria. We com-
pared the Smith et al. model with ours by extracting
predictions of flow-weighted concentrations for each
stream reach (shown in fig. 7 by Smith et al. 2003;
available at http://water.usgs.gov/nawqa/sparrow/
intro/Smithetal_ES&T_2003_fig7.xls) for which we
had a corresponding validation sample.

Our predictors primarily describe static spatial
variation among sites, but we also wanted to assess
how much variation in nutrient concentrations poten-
tially could be attributed to temporal or measurement
variation. We assessed the magnitude of temporal or
measurement variation in concentrations by calculat-
ing the ratio of between-site variance (spatial signal) to
within-site variance related to temporal and measure-
ment noise, i.e. the signal-to-noise (S:N) ratio (Kauf-
mann et al. 1999). For example, if more variation
existed among multiple sites than existed among all
repeated samples from the same sites, then the S:N
ratio would be high. We used these S:N ratios to
estimate the best possible r2 that static predictors could
produce. We estimated variance among within-site
replicate samples from a subset of 41 US Environmen-
tal Protection Agency (EPA) Environmental Monitor-
ing and Assessment Program (EMAP) and Utah State
University (USU) sites sampled multiple times for both
TP and TN. These samples exhibited temporal varia-
tion comparable to that seen by Chételat and Pick
(2001). We added all of these replicate samples to our
original training data set and derived the variance
within and among sites from a linear mixed model
built with the R package lme4. The model treated sites
as a random effect and did not contain any fixed effect.
We calculated the S:N ratio from these 2 variances and
the maximum possible r2 value as: max(r2) = S:N/(S:N
+ 1) (J. Van Sickle, USEPA Western Ecology Division,
personal communication, illustrated in fig. 2 by
Stoddard et al. 2008). We calculated among-site
variance with data from all sites instead of only those
sites with replicate samples because this larger data set
provides a more representative estimate of the natural
variation in stream nutrient concentrations across the
western USA.

Determining highest probable concentrations based on
model predictions

Site-specific nutrient criteria should incorporate
both the model prediction of nutrient concentrations

and prediction uncertainty arising from unaccounted
variation, imperfect model structure, and error in
measuring predictor values and nutrient concentra-
tions. Prediction uncertainty can be quantified by
establishing a prediction interval describing the range
of conditions expected at a site. The upper prediction
limit (PL) of this interval establishes the upper limit of
the expected nutrient condition and accounts for
prediction uncertainty arising from unexplained
variation and model uncertainty. Distribution-based
statistical methods (e.g., linear regression) can pro-
duce prediction intervals from an assumed normal
distribution, but nondistributional methods like RF
cannot. Quantile Regression Forests have been pro-
posed as a method for determining prediction
intervals (Meinshausen 2006), but this approach has
2 shortcomings. RF models cannot extrapolate beyond
the range of the data used to construct them, so
quantiles based on RF models become constrained at
the lower and upper ends of the data. Also, the
quantiles produced by quantile random forest models
do not account for uncertainties associated with the
estimates of a given quantile. We relied instead on
2 forms of empirically derived prediction intervals
to develop reliable prediction intervals for our RF
models.

The Simple Empirical Error (SEE) method empiri-
cally determines the amount of error for each
prediction from a bootstrap sample of residuals from
the training data (J. Van Sickle, personal communica-
tion). For each prediction, we sampled all residuals
500 times with replacement and added each sampled
residual to the prediction to create an empirical
distribution of the prediction plus error. We selected
the 95th percentile of this distribution as the upper PL
for that prediction.

The 2nd method is a variation of the UNcertainty
Estimation based on Local Errors and Clustering
(UNEEC) method of Shrestha and Solomatine (2008).
UNEEC is similar to SEE in that errors are determined
from a bootstrap sample of residuals from the training
data, but instead of using a sample of all residuals,
UNEEC uses residuals from only those samples
similar to the site we are trying to predict. Sample
residuals for similar sites were derived by first
clustering all training observations by their environ-
mental properties and then bootstrap-sampling the
residuals of each cluster and selecting the 95th

percentile as the error for that cluster. For each
prediction, probability of membership in each cluster
is used to calculate a weighted average of the 95th

percentile errors for all clusters. This weighted-
average error is then added to the prediction to
determine the upper 95th percentile PL for that
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prediction. We created clusters based on those
environmental variables selected for the RF model.
These environmental data were first standardized to a
common scale and then clustered (k-means cluster-
ing). We selected the number of clusters to minimize
the sum of squares and to ensure the minimum
number of samples included in each cluster was .50.
We then randomly sampled the residuals of the
training data for each cluster 500 times with replace-
ment and determined the 95th percentile value. We
assessed probability of cluster membership for new
observations by applying a separate RF model built
with the same transformed environmental variables
used in clustering. We used the probabilities of cluster
membership as weights when calculating the average
95th percentile error to be added to each prediction to
determine the upper PL.

Results

Model structure and performance

Relationships between nutrient concentrations and
most predictors were consistent with our understand-
ing of how the natural environment influences nutrient
concentrations (Figs 2, 3). Both models included factors
related to sources and sinks, but 2 predictors, both
related to geologic sources, in the TP model were
clearly more important than the others. The TN model
did not include any clearly dominant predictors, and
TN was almost equally influenced by predictors
related to sources and sinks. The TP predictors were
almost entirely static (with the exception of previous
year’s precipitation), whereas the TN model included
temporal measures like day of year and precipitation
during the 2 mo prior to sampling.

We tried to eliminate correlated variables during
variable selection, but in several cases, removing
correlated predictors degraded model performance.
To maximize the model’s ability to make predictions,
we retained correlated variables if they improved
model performance. The only predictors in our TN
model that were strongly correlated were atmospheric
SO4

22 and NO3
2 deposition (r = 0.9). Correlated TP

predictors included relative humidity and SOC (r =

0.8), relative humidity and atmospheric Ca deposition
(r = 0.64), relative humidity and previous year’s
precipitation (r = 0.63), SOC and previous year’s
precipitation (r = 0.67), local minimum temperature
and EVI (r = 0.63), % volcanic lithology and rock P
concentration (r = 0.69), and soil erosion factor and
soil water capacity (r = 0.61). RF models are robust to
the effects of correlated predictors (Cutler et al. 2007).
However, correlated predictors can cause variable
importance measures to be unreliable (Strobl et al.

2008), so inferences regarding the relative importance
of different processes in Figs 2 and 3 should be made
with caution.

Both models predicted nutrient concentrations
without significant bias, but were relatively impre-
cise (Table 2, Fig. 4A, B). The TP model accounted
for ,½ of the variation in TP concentrations, and the
TN model accounted for ,M of the variation in TN
concentrations. However, both models did have
positive, if modest, NSEs indicating some predictive
power. RMSEs of both models were ,12% of the
range of observed values (TP range: 1–192 mg/L, TN
range: 5–960 mg/L). Model fit varied slightly be-
tween training and validation data, but we saw no
evidence that the RF models were overfit to the
training data. Only the TP model showed any
evidence of bias, which was only slight (22.3 mg/L)
with 16% of the bootstrapped validation samples
having an intercept less than the specified region of
equivalence. Both models had slopes equivalent to 1
when assessed with training data but not when
assessed with validation data, results indicating that
predictions were not always consistent with ob-
served values at new locations. For validation data,
51% of the bootstrap slope estimates for the TP
model fell above the region of equivalence (Fig. 4A).
The slope of all predictions together was 1.3, but this
result was heavily influenced by the single valida-
tion observation .100 mg/L. This slope . 1 indicates
that the model increasingly overpredicted with
increasing TP concentrations. The equivalence test
for slope showed the opposite pattern for the TN
model, with 64% of the bootstrap estimates of slope
falling below the region of equivalence and a smaller
slope (0.66), indicating underpredictions at higher
concentrations (Fig. 4B). Both models explained
much more variance in nutrient concentrations than
did predictions based on the Smith et al. (2003)
models (Table 2), which, given their negative NSEs,
predicted nutrient concentrations no better than the
mean of the data.

Our models had relatively low r2 values, but the
results of our S:N analysis indicated that both models
explained most of the spatial variation in nutrient
concentrations (Table 3). The remaining unexplained
variation was the result of either temporal variation or
measurement error. To assess how much of the
explainable spatial variation was accounted for by
spatial predictors, we removed temporal predictors
from both models by removing day of year from the
TN model and replacing temporal precipitation
measures with long-term average precipitation in
both models. The spatial-only TP model had an r2 of
0.39 and accounted for 59% of the static spatial
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variation in concentrations, i.e., the model explained
39% of the observed variation compared with a
maximum possible of 66%. The spatial-only TN
model had an r2 of 0.28 and accounted for 52% of
the spatial variation.

Determining the highest probable concentration based on
model predictions

The SEE and UNEEC methods produced similar upper
PLs (Fig. 5A, B). Each method produced site-specific

FIG. 2. Predictors, relative importance (Imp), direction of effect, and associated mechanisms for total P (TP) model. Importance
is the % increase in mean squared error when the predictor is removed with standard error of the mean in parentheses (calculated
from 50 separate models). Effect is illustrated as partial dependence plots of each predictor with all other predictors held constant.
Change in predictor is displayed on the x-axis and change in TP is displayed on the y-axis. Mtns = mountains, N = no, Y = yes,
SOC = soil organic C, EVI = enhanced vegetation index.
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upper PLs rather than the single line that would be
produced by distribution-based methods. For visual
clarity, we plotted the envelopes containing individ-
ual upper PLs of training sites instead of the cloud of
individual upper PLs themselves. Both methods
identified identical numbers of training and valida-
tion sites as greater than their upper PL (Table 4).
Prediction interval coverage probabilities (PICPs; the
probability that all observed values fit within their
prediction limits) calculated from validation data
indicated that 90% and 94% of predictions were
within the prediction limits for TP and TN, respec-
tively, for both methods. Ideally, the PICP would
equal the selected prediction limit of 95%. The TN

model identified approximately the correct number
of sites as above the upper PL, but upper PLs for the
TP model were conservative, identifying more sites
above the limit than expected.

SEE and UNEEC identified the same number of
sites as having concentrations greater than the upper
PL, but the specific sites identified as being over their
PL varied between methods. For predicted high
concentrations, upper PLs produced by the UNEEC
method were larger than upper PLs produced by the
SEE method, and the reverse was true for smaller
predicted concentrations. This pattern occurred be-
cause of heteroscedasticity in model errors (seen in
Fig. 4A, B), whereby larger predictions were made

FIG. 3. Predictors, relative importance (Imp), direction of effect, and associated mechanisms for total N (TN) model.
Importance is listed as the % increase in mean squared error when the predictor is removed with standard error of the mean in
parentheses (calculated from 50 separate models). Effect is illustrated as partial dependence plots of each predictor with all other
predictors held constant. Change in predictor is displayed on the x-axis and change in TN is displayed on the y-axis.
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with larger errors. The SEE method applies the same
error to all predictions, and therefore, does not
account for heteroscedasticity in model errors.

Discussion

Model performance

Our results showed that spatial variation in natural
background TP and TN concentrations can be accu-
rately predicted from geographic data, albeit not as
precisely as we would like. We consider our models to
be accurate. The TN model showed no consistent bias,
and the bias of the TP model was ,2% of the range of
natural variation in TP concentration among our sites.

Model predictions are generally applicable across the
Mountain and Xeric ecoregions in the western USA, as
demonstrated by model performance at validation
sites for both models. Geothermal inputs can greatly
affect nutrient concentrations, so streams with signif-
icant geothermal inputs are the major exception to the
generality of our predictions. Catchments larger than
those we used to develop our models (i.e., .9000 km2)
also would be outside of the experience of the model.
We developed both models, in part, from data
collected in the Great Plains. However, these sites did
not span the range of environments found in the Great
Plains, so our models should not be applied generally
to streams in the Great Plains. The concordance of the

FIG. 4. Plots of observed vs predicted values of total P (TP) (A) and total N (TN) (B) for training and validation data for
Random Forest (RF) models.

TABLE 2. Assessment of random forest (RF) model performance and comparison with predictions of the Smith et al. (2003)
model (r2

= squared Pearson correlation coefficient) between observations and associated model predictions. The equivalent
intercept is the percentage of 10,000 bootstrap simulations falling within the region of equivalence (Eq0 = Ŷ 6 25%) for the
intercept = 0. The equivalent slope is the percentage of 10,000 bootstrap simulations falling within the region of equivalence (Eq1

= m 6 25%) for the slope = 1. Predictions made for training data are for out-of-bag data (i.e., not used in individual model
creation). Tng = training data, Val = validation data, NSE = Nash–Sutcliffe Model Efficiency, RMSE = root mean square error,
TP = total P, TN = total N.

Nutrient Model Data n r2 NSE RMSE
Equivalent
intercept

Equivalent
slope

TP RF Tng 752 0.40 0.40 16.2 100.0 100.0
Val 40 0.46 0.43 20.5 83.8 22.2

Smith et al. Val 40 0.04 20.10 28.5 56.1 16.4

TN RF Tng 665 0.32 0.32 113.9 100.0 99.6
Val 35 0.23 0.16 80.1 96.8 34.6

Smith et al. Val 35 0 20.58 109.6 75.7 0.4
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observed relationships between predictors and nutri-
ent concentrations with known mechanisms influenc-
ing TP and TN concentrations in streams further
increases our confidence in the robustness of model
predictions. The fact that the models accounted for
most (59% for TP, 52% for TN) of the spatial variation
in TP and TN concentrations indicates that the models
were successful in capturing site-specific differences in
reference conditions. We consider these models to be
primarily spatial because the 1 or 2 predictors with

TABLE 3. Assessment of signal-to-noise (S:N) ratio.
Varsites = variance associated with sites, Varreps =

variance associated with replications, Max r2
= highest

possible r2 value for a given S:N ratio calculated as S:N/(S:N
+ 1), TP = total P, TN = total N.

Data Varsites (signal)
Varreps

(noise) S:N Max r2

TP 328 170 1.93 0.66
TN 11071 9311 1.19 0.54

FIG. 5. Plots of observed vs predicted values and upper prediction limits (PLs) for total P (TP) (A) and total N (TN) (B) for
training and validation data. Observations are plotted as grey dots (training data) or open circles (validation data). Regions
containing upper PLs for training data are plotted as filled grey (Simple Empirical Error [SEE] method) or cross-hatch
(UNcertainty Estimation based on Local Errors and Clustering [UNEEC] method; Shrestha and Solomatine 2008). Site-specific
upper PLs for validation data are plotted as filled circles (SEE method) or bars (UNEEC method).
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temporal components (i.e., previous year’s precipita-
tion in TP model, and day of year and prior 2 mo
precipitation in TN model) were of only moderate
importance in either model.

Model predictions based on measures of continu-
ously varying environmental factors also clearly
outperformed the Smith et al. (2003) model predic-
tions. Comparing the performance of our models
predicting baseflow concentrations with the Smith
et al. models that predict annual flow-weighted
concentrations is not ideal. However, models like those
of Smith et al. created from means instead of individual
samples could potentially yield better predictions
because they should minimize the effects of measure-
ment and temporal noise on model parameterization.
The limited ability of the Smith et al. model to predict
the baseflow-sample concentrations typically used in
monitoring reveals a limitation inherent in models
developed from mean sample concentrations. As also
noted by Smith et al., their models were limited by
their reliance on ecoregions for controlling spatial
variation in nutrient sources. More recent applications
of the SPARROW model (Garcia et al. 2011, Wise and
Johnson 2011) account more directly for variation in
natural sources of nutrients, but they predict only
annual yields, which makes them difficult to use in
monitoring. These models are probably better suited to
predicting nutrient pollution levels and sources than
background conditions because most applications of
the SPARROW model are dominated by predictors
related to anthropogenic sources.

Predictors

Most of the relationships between environmental
factors and nutrient concentrations matched expecta-
tions based on previous studies, but relationships
between nutrient concentrations and relative humid-
ity, Ca deposition, EVI, precipitation, and SO4

22

deposition were not as clearly related to known
mechanisms. Increasing TP concentrations with de-

creasing humidity could be caused by evaporative
concentration (Reddy et al. 1999). However, we see no
reason to expect that atmospheric Ca deposition is
directly linked to TP. Instead, the NADP measure of
wet Ca deposition probably is correlated with dust
deposition (Brahney 2012), and this variable may be
acting as a surrogate for the deposition of P in dust
(Reynolds et al. 2001). We expected TP and TN
concentrations to decrease with increasing EVI be-
cause of increasing nutrient retention with increasing
vegetation cover. However, this pattern occurred only
in areas with lower EVI values associated with
grasslands and scrub, and the opposite pattern
occurred in areas with higher EVI values associated
with forests (i.e., nutrient concentrations increased
with increasing EVI). These increasing nutrient
concentrations in forested areas might be attributable
to lower nutrient retention by mature forest (Vitousek
and Reiners 1975), built up litter fall from decades of
fire suppression acting as a source of nutrients (Miller
et al. 2005), or decreased microbial biomass resulting
in lower P retention (Chen et al. 2003). More
vegetation also could lead to increased rock weather-
ing (as seen by Olson and Hawkins 2012 for other
elements), which would release additional P.

The relationship between TN concentrations and
precipitation also differed in direction of effect among
environments. TN concentrations decreased with
additional precipitation in xeric areas but increased
with additional precipitation in mesic ones. TN
concentrations have been observed to be positively
correlated with precipitation in mesic areas (e.g., Hill
1986, Vanderbilt et al. 2003) and negatively correlated
with precipitation in xeric areas (e.g., Lewis and Grant
1979, Alvarez-Cobelas et al. 2010), but these 2 patterns
have not been observed in the same data set.
Increasing precipitation in mesic areas can lead to
higher TN concentrations resulting from increased N
fixation in wet soils (Cleveland et al. 1999), litter
decomposition (Lewis et al. 1999), and flushing
caused by greater stream/hill slope connectivity

TABLE 4. Performance of upper prediction limits (PLs). For total P (TP) training data, n = 752, and for total N (TN) training
data, n = 665. For TP validation data, n = 40, and for TN validation data, n = 35. UNEEC = UNcertainty Estimation based on
Local Errors and Clustering method of Shrestha and Solomatine (2008), SEE = Simple Empirical Error, PICP = Prediction Interval
Coverage Probability (Shrestha and Solomatine 2008).

Model

SEE method UNEEC method

Training data Validation data Training data Validation data

No. . upper
PL PICP

No. . upper
PL PICP

No. . upper
PL PICP

No. . upper
PL PICP

TP 68 91% 4 90% 68 91% 4 90%
TN 61 91% 2 94% 61 91% 2 94%
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(Kane et al. 2008). Howarth et al. (2006) proposed that
increased precipitation results in shorter water resi-
dence times that limit the amount of contact between
runoff and denitrifying organisms in the stream bed.
We suspect the negative relationship we observed
between precipitation and TN concentrations in xeric
areas is caused by water-dependent plant uptake.
Greater precipitation in xeric areas may also create
more anoxic zones in soils and, thus, increase
denitrification (Bollmann and Conrad 1998). The
relationship that is the least interpretable was the
positive association between TN and atmospheric
SO4

22 deposition. This relationship is similar to the
relationship seen by Cai et al. (2011) between stream
NO3

2 and atmospheric SO4
22 deposition in streams

in Great Smoky Mountains National Park. SO4
22

deposition could have a direct effect on stream TN by
suppressing plant growth and, hence, N uptake, but
we think it more likely that SO4

22 deposition is a
surrogate for another process or N source, such as dry
deposition.

Volcanic rocks are a known source of P, but we
were surprised that they were a more important
predictor of stream TP than % rock P. During model
development, we created models without % volcanic
lithology as a predictor to assess its importance
relative to % rock P. That model performed nearly
as well as our TP model with % volcanic lithology
(r2

= 0.37 vs 0.40), and % rock P was the most
important predictor, indicating that most, but not all,
of the explanatory power of volcanic rocks is related
to their P content. We attribute the remaining
explanatory power of volcanic rocks to their relatively
young age and faster weathering relative to other rock
types (Gislason et al. 1996) in the western USA. Rapid
weathering is especially true of recently active (within
1000–3000 y) basalt flows in the Gila Mountains/
Mogollon Rim Ecoregion and may explain why
streams in this region have average TP concentration
.23 that of streams in the rest of our study area
(48 mg/L vs 18 mg/L).

Several environmental factors associated with nu-
trient concentrations in other studies were not
selected as predictors in our models. Rock N and
dry N deposition both can be sources of N (Holloway
and Dahlgren 2002, Fenn et al. 2003) that increase TN
concentrations in streams and lakes. Rock N content
was positively related to stream TN in our data as
observed elsewhere (Williard et al. 2005, Gardner and
McGlynn 2009), a result indicating that rock N is a
source. However, this relationship was weak, and
including it as a predictor did not improve model fit.
Rock N may act as a significant source of stream TN
only in specific circumstances where rock N content is

high and readily weathered (e.g., Gardner and
McGlynn 2009), such as in carbonaceous or oil shales.
We also included estimates of dry N deposition
derived from the CMAQ model in the TN model,
but including these estimates slightly decreased
model performance compared with models that
included only wet N deposition (i.e., NADP data).
This decrease in model performance with inclusion of
dry N deposition estimates does not imply that dry
deposition is not influencing stream TN, but rather
that any potential model improvement associated
with the inclusion of dry deposition was swamped by
errors in deposition estimates. CMAQ dry-deposition
estimates are based on emissions data instead of
measured deposition as in the NADP data. Errors in
deposition estimates could be caused by inaccurate
emissions data, errors in the model estimating the
distribution and amount of deposition, or both.

Factors associated with downstream nutrient losses
and nutrient colimitation, both of which could
potentially modify the amount of nutrients exported
from catchments, also were not included in our
models. Including catchment area, which is related
to travel time and stream size and is associated with
nutrient loss (Prairie and Kalff 1986, Smith et al. 2003),
in our models decreased performance of both the TP
and TN models. The lack of a relationship with
catchment area in our study area probably occurred
for several reasons. First, previous estimates of in-
stream loss rates are mostly from agricultural catch-
ments (e.g., Alexander et al. 2000), which have larger
loss rates than reference catchments (Prairie and Kalff
1986, Mulholland et al. 2008). Greater uptake in
streams flowing through agricultural catchments is
probably caused by their higher nutrient concentra-
tions, despite their lower uptake efficiencies (Mulhol-
land et al. 2008). Second, although NH4

+ uptake is
positively related to stream size, the relationship
between NO3

2 uptake and stream size is much noisier
(Tank et al. 2008). The noisy NO3

2–stream size
relationship may obscure any effect that uptake of
NH4

+ by algae might have on TN concentrations
because NO3

2 concentrations are much higher than
NH4

+ concentrations. Third, surrogates for denitrifi-
cation (i.e., groundwater index) or streambed P
adsorption or precipitation (i.e., Ca availability or
channel slope) might have been more strongly
associated with N and P removal because they are
more direct surrogates of nutrient sinks than stream
size. We also examined the possibility that P and N
might be colimiting in streams as they are in lakes
(Dodds et al. 2002). If N and P are colimiting, we
would expect concentrations of one to be associat-
ed with concentrations of the other. For example, a
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P-limited system would have lower N uptake and
higher N export (and TN concentrations) at low P
than at high P because of stoichiometric constraints on
a stream’s ability to use excess N. We assessed
whether potential interactions between TP and TN
improved predictions of each nutrient by including
each nutrient as a predictor of the other. TP (either
measured or predicted) had no effect on the perfor-
mance of the TN model, but including measured TN
slightly improved the r2 of the TP model (0.40 to 0.42).
However, we elected not to include TN as a predictor
in the final TP model because the use of predicted TN
did not improve the models and including measured
TN as a predictor would prevent the application of
these models to unmeasured locations.

Model shortcomings and possible improvements

Although the models made unbiased predictions of
stream TP and TN concentrations in the western USA,
these predictions could be potentially improved by
addressing 2 model shortcomings. The 1st shortcom-
ing of our models is their reliance on some predictors
that can be altered by land use, which potentially
could bias predictions of nutrient concentrations
expected under natural conditions at altered sites.
Vegetation predictors (e.g., EVI and % evergreen)
may be especially problematic in this regard, but
landuse alteration could also alter soil properties
(bulk density and SOC). These predictors could
simply be dropped from the models because they
had relatively low importance, but a better approach
would be to replace these predictors with estimates of
potential vegetation (e.g., LANDFIRE Biophysical
Settings Layer) or predicted natural soil properties
(e.g., Malone et al. 2011). We did not pursue these
options because it was not clear a priori which
vegetation and soil attributes would be important.

A 2nd shortcoming of our models is their relatively
poor precision. The effect of model imprecision is to
increase upper PL, making criteria based upon these
upper limits less protective than they would be if
models were more precise. We attribute most of the
poor model precision to temporal and measurement
variation in grab-sample concentrations that was
unaccounted for by our models. A comparison of
the variation explained by our models with that
potentially associated with spatial differences among
streams indicates that most unexplained variation
was some combination of this temporal and measure-
ment error. Much of the unexplained temporal
variation probably was associated with seasonal and
yearly differences in runoff, flushing, freezing, or
snowmelt. As models that characterize natural runoff

and hydrologic regimes become available (e.g., Li
et al. 2010), temporally and spatially explicit predic-
tions of flow should enable better nutrient predictions
(Helton et al. 2011). Also, some of the unexplained
variation in nutrient concentrations may be the result
of differences over time or between agencies in
methods used to measure nutrient concentrations.
TN measurements made before 1999 were almost 43

higher on average than measurements made after
1999, resulting in a positive relationship between year
of sample and TN model residuals. This decrease in
measured TN concentrations might be partially a
result of the change from the Kjeldahl digestion
method to persulfate oxidation and colorimetry
method that occurred around this time. Patton and
Kryskalla (2003) analyzed samples with both methods
and observed that TN values obtained with persulfate
oxidation and colorimetry were, on average, 15%

lower than concentrations obtained with the Kjeldahl
digestion method. Model performance probably
could be improved by limiting data to observations
measured with a single method or by adjusting
concentrations to account for the method used (if that
information is known). We chose to retain these
earlier samples in our data to maximize the number of
environments represented in our model, but recom-
mend that future work be based on TN estimates
derived from a single method. Developing models
based on long-term average concentrations or loads
should eliminate much of the residual error associat-
ed with temporal variation in grab-sample concentra-
tions. However, using long-term averages to establish
criteria for all of the streams that need to be assessed
is not practical because of costs associated with such
long-term measurements. A better approach would be
to focus on predicting temporal variation in the
nutrient concentrations observed from grab samples.
Models that could predict both spatial and temporal
variation would provide a better basis for establishing
criteria and could provide potentially important
ecological information on the location and timing of
natural nutrient fluctuations that influence primary
producers (e.g., Butzler and Chase 2009).

Much of the remaining unexplained spatial varia-
tion is probably associated with some combination of
natural and anthropogenic factors not included in our
models. Natural factors that we did not consider
include inputs from migrating fish (either excreted or
from carcasses), the effect of flow modification by
beaver dams, variation in uptake with spatial or
temporal changes in stream metabolism, and natural
disturbances that affect catchment or riparian vegeta-
tion (e.g., Houlton et al. 2003, Eshleman et al. 2004).
MODIS-derived EVI could be used to detect vegeta-

2013] MODELING SITE-SPECIFIC NUTRIENT CRITERIA 733



tion disturbances, but model development and
application would then be restricted to the last 10 y,
the period for which MODIS observations are
available. Development of models of stream gross
primary production and respiration (e.g., Bernot et al.
2010) would allow us to incorporate these metabolic
factors that control nutrient uptake and denitrification
rates (Mulholland et al. 2008). Potential anthropogenic
sources of unexplained spatial variation include either
historical (e.g., logging) or highly localized land use
(e.g., cabins with septic systems near creeks), that
were not caught by our screening. Dry N deposition
and nutrient inputs delivered by dust are other
potentially important anthropogenic sources (Ballan-
tyne et al. 2011). Accounting for these inputs from
national data sets like the NADP should be possible
when our ability to measure or predict dry N
deposition and dust improves.

Developing nutrient criteria

Both the SEE and UNEEC methods appear suitable
for establishing upper PLs. PLs produced by both
methods were conservative and found 1 to 5% more
sites above their PL than expected from the chosen
prediction interval (e.g., PICPs were 1 to 5% , the
chosen prediction interval of 95%). However, com-
plete agreement may be difficult to achieve given that
other applications of the UNEEC method resulted in
PICPs that deviated from desired prediction levels by
4 to 9% (Solomatine and Shrestha 2009, Malone et al.
2011). The UNEEC method better accounted for data
heteroscedasticity, but this modest improvement
required a much more complicated approach that
might limit understanding of the method by manag-
ers and stakeholders. The UNEEC method also
assumes that prediction error is different under the
different natural environmental conditions identified
in the clustering step (Shrestha and Solomatine 2008).
This assumption may be reasonable, but it has not
been tested rigorously. Choice of method will involve
a tradeoff between the potential to account for
heteroscedasticity in prediction errors and ease in
understanding how criteria are identified.

Quantifying prediction uncertainty allows regula-
tors to address uncertainty explicitly when develop-
ing a criterion, an aspect of criteria-setting not often
considered. We used an upper 95% PL in our example
application, but the actual PL selection for use as a
water-quality criterion should balance the likelihoods
of under- and overprotection. PLs set too low increase
the risk of overprotecting that stream and incurring
unnecessary economic costs. PLs set too high increase

the risk of environmental degradation and eutrophi-
cation. One approach to this tradeoff would be to
adapt the tiered approach often used in setting
biologic criteria (sensu Yoder and Rankin 1999). In
this approach, 2 thresholds are set and sites are
categorized as either ‘‘meets reference’’, ‘‘needs
additional monitoring’’, or ‘‘impaired’’. The predic-
tion and 95% PL could be used as thresholds, with
values above the prediction triggering close monitor-
ing and values above the 95% PL triggering immedi-
ate regulatory action.

Concluding remarks

Model-derived, site-specific criteria should better
account for natural variation in nutrient concentrations
than do regional criteria based on average regional
conditions. As seen in other studies, observed nutrient
concentrations for minimally altered reference sites
varied over an order of magnitude within ecoregions
(Fig. 6A–D). A comparison of this variation with
proposed regional criteria (horizontal lines in Fig. 6A–
D) highlights the difficulty of establishing a single
criterion protective of most streams without overpro-
tecting some significant minority of streams. For
example, the criteria proposed by Herlihy and Sifneos
(2008) and Smith et al. (2003) for TP in nutrient
ecoregion II (Western Forested Mountains, Fig. 6A)
would protect most sites, but would be overprotective
of the 25% of sites with naturally high TP concentra-
tions. The site-specific criteria identified for TP in this
ecoregion by our approach are generally higher than
these regional criteria, but avoid being overprotective.
Also, in ,15% of cases, the site-specific criteria would
be more protective than the regional criteria. This
pattern of model-based upper PLs that are higher than
the Herlihy and Sifneos (2008) regional criteria also
occurred for TN in nutrient ecoregion II (Fig. 6C). In
nutrient ecoregion III (Xeric West), our site-specific
criteria generally were higher than the Smith et al.
(2003) regional criteria for TP and TN (Fig. 6B, D).
However, our PL-based site-specific criteria generally
were lower than criteria developed from models by
Dodds and Oakes (2004). The higher expected nutrient
concentrations identified by Dodds and Oakes could
have resulted from prediction error that occurs when
effects of land use are not fully captured in landuse–
nutrient models. Hill et al. (2013) noted that stream
temperature models developed from only reference-
site data predicted lower temperatures than did models
built from data collected at both reference and
nonreference sites that statistically controlled for the
effects of land use. In some cases, model-based upper
PLs agreed on average with proposed regional criteria

734 J. R. OLSON AND C. P. HAWKINS [Volume 32



(i.e., the Herlihy and Sifneos criterion in Fig. 6B, D or
the Smith et al. criterion in Fig. 6C), but use of site-
specific criteria would result in lower thresholds in ,½
of the cases and higher thresholds in the other ½.

The process of developing and applying site-specific
criteria is more complex than the process of developing
and applying regional criteria, but site-specific criteria
are potentially more effective than regional criteria
because they better account for natural variation. Sites

with natural nutrient concentrations far below a
regional criterion are underprotected and could po-
tentially change trophic state while still meeting the
criterion. Regional criteria applied to sites with
naturally high concentrations may be challenged in
court as too restrictive resulting in delay or prevention
of implementation of the criterion. Given the complex
processes that cause streams to differ in their natural
nutrient concentrations, we think that setting nutrient

FIG. 6. Comparison of observed concentrations and upper prediction limits (PLs) for total P (TP) in Nutrient Ecoregion II
Western Forested Mountains (A) and III Xeric West (B) and total N (TN) in Nutrient Ecoregions II (C) and III (D) with regional
criteria from Herlihy and Sifneos (2008; solid lines), Dodds and Oakes (2004; dashed lines), and Smith et al. (2003; dotted lines). In
all 4 cases, significant variation occurs within each region making any criterion identified over- or underprotective in many
instances. Site-specific criteria based on upper PLs, although often higher than the regional criteria, better account for this
observed variation. Lines in boxes are medians, box ends are quartiles, whiskers show 5th and 95th percentiles. SEE = Simple
Empirical Error method, UNEEC = UNcertainty Estimation based on Local Errors and Clustering [UNEEC] method (Shrestha
and Solomatine 2008).
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criteria based on regional classifications or typologies
will be less effective than setting site-specific criteria
(Hawkins et al. 2010).

Establishing meaningful nutrient criteria for individ-
ual streams is challenging but necessary for develop-
ment and application of scientifically defensible and
ecologically meaningful water-quality standards. Mod-
el-based, site-specific criteria will protect streams with
naturally low nutrient concentrations from eutrophica-
tion better than regional criteria that are based, in part,
on data from streams with naturally high concentra-
tions. Conversely, streams with naturally higher nutri-
ent concentrations should not be held to a standard that
is impossible to achieve. Making site-specific predic-
tions across large regions might appear challenging, but
models based on readily available geographic predic-
tors can now be developed easily and applied within a
GIS framework to produce spatially explicit maps of
expected nutrient conditions. Similar site-specific pre-
dictions have been made of streambed-surface grain
sizes across France (Snelder et al. 2011). As additional
data describing the spatial and temporal factors
affecting nutrient concentrations become available,
models can be improved to set nutrient criteria that
are ever more reliable and protective.
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