
at SciVerse ScienceDirect

Journal of Environmental Management 126 (2013) 157e173
Contents lists available
Journal of Environmental Management

journal homepage: www.elsevier .com/locate/ jenvman
The economics of fuel management: Wildfire, invasive plants, and the
dynamics of sagebrush rangelands in the western United States

Michael H. Taylor a,*, Kimberly Rollins a, Mimako Kobayashi a,1, Robin J. Tausch b

aDepartment of Economics, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
bUSDA Forest Service, Rocky Mountain Research Station e Reno, NV 920 Valley Road, Reno, NV 89512, USA
a r t i c l e i n f o

Article history:
Received 19 April 2012
Received in revised form
14 March 2013
Accepted 26 March 2013
Available online

Keywords:
Fuel Treatment
Wildfire
Sagebrush ecosystem
Great Basin
State-and-transition model
Ecological thresholds
Abbreviations: WSS, Wyoming Sagebrush Steppe
brush; STM, State-and-Transition Model; NFDRS, Nat
tem; USFS, U.S. Forest Service; BLM, Bureau of Land M
* Corresponding author. Tel.: þ1 775 784 1679; fax

E-mail addresses:mhtaylor@unr.edu (M.H. Taylor),
mkobayashi@worldbank.org (M. Kobayashi), rtausch@

1 Present address: Mimako Kobayashi, Agriculture
(AES), The World Bank, 1818 H St., NW Washington, D

0301-4797/$ e see front matter � 2013 Elsevier Ltd.
http://dx.doi.org/10.1016/j.jenvman.2013.03.044
a b s t r a c t

In this article we develop a simulation model to evaluate the economic efficiency of fuel treatments and
apply it to two sagebrush ecosystems in the Great Basin of the western United States: the Wyoming
Sagebrush Steppe and Mountain Big Sagebrush ecosystems. These ecosystems face the two most
prominent concerns in sagebrush ecosystems relative to wildfire: annual grass invasion and native
conifer expansion. Our model simulates long-run wildfire suppression costs with and without fuel
treatments explicitly incorporating ecological dynamics, stochastic wildfire, uncertain fuel treatment
success, and ecological thresholds. Our results indicate that, on the basis of wildfire suppression costs
savings, fuel treatment is economically efficient only when the two ecosystems are in relatively good
ecological health. We also investigate how shorter wildfire-return intervals, improved treatment success
rates, and uncertainty about the location of thresholds between ecological states influence the economic
efficiency of fuel treatments.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Wildfire suppression costs in the United States have increased
steadily over the last decades (Calkin et al., 2005; GAO, 2007; Gebert
et al., 2007; Stephens and Ruth, 2005; Westerling et al., 2006), with
related annual expenditures by the U.S. Forest Service (USFS) and
Bureau of Land Management (BLM) exceeding a billion dollars in
four out of the seven years leading up to 2006 (Gebert et al., 2008).
This steady increase in wildfire suppression costs is believed to be
due in part to a century of U.S. federal wildfire policy that has
emphasized wildfire suppression and post-fire vegetation rehabili-
tation over pre-fire fuel management treatments (Busenberg, 2004;
Donovan and Brown, 2007; Egan, 2009; GAO, 2007; Pyne, 1982;
Reinhardt et al., 2008; Stephens and Ruth, 2005). Additionally,
invasive plants have been identified as contributing to increased
wildfire activity on rangelands in the western United States (McIver
et al 2010; Balch et al 2013). Pre-fire fuel management treatment
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(henceforth fuel treatment) is recognized as an important tool to
reduce the frequency of severe wildfires, and thus the expected
costs of damages and wildfire suppression, and to maintain
ecosystem health (GAO, 2007; Mercer et al., 2007; Reinhardt et al.,
2008). Public agency efforts and expenditures, however, continue
to emphasize wildfire suppression and post-fire rehabilitation over
pre-fire fuel treatment. The continued focus onwildfire suppression
and rehabilitation may be partly explained by the lack of empirical
work establishing the economic efficiency of pre-fire fuel treat-
ments (Gebert et al., 2008; Hesseln, 2000).

In this article we develop a simulation model to evaluate the
economic efficiency of fuel treatments and apply it to two sage-
brush rangeland ecosystems in the Great Basin of the western
United States. Our model simulates long-run wildfire suppression
costs with and without fuel treatment and takes into account the
factors identified in Kline (2004) as necessary for evaluating the
economic efficiency of fuel treatments. In particular, our model
accounts for (i) the cumulative cost of fuel treatments over time, (ii)
the likelihood of wildfire events with and without treatments, (iii)
the costs of wildfire suppression and post-fire restoration, and (iv)
the combined influence of wildfires and management actions on
ecological conditions and ecological services over time. In ac-
counting for all of these factors in a unified framework, this article
presents an analytical tool that can be applied to evaluating the
economic efficiency of fuel treatment in other ecological settings.
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Fig. 1. Geographical distribution of Sagebrush plant communities in the Great Basin.
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To our knowledge, this article provides the first estimates of the
economic efficiency of fuel treatment for rangeland ecosystems
and, in particular, rangelands that have been affected by invasive
plants. Rangelands are the dominant land type globally, covering
40% of total land area (Millennium Ecosystem Assessment 2005),
and in the United States, covering 34.2% of total U.S. land area
(Loomis, 2002). Excessively intense and/or frequent wildfires have
been identified as a significant contributor to the continued
ecological degradation of rangelands throughout the world, where
conservative estimates are that between 10 and 20% of global
rangelands are degraded (Millennium Ecosystem Assessment
2005). Previous work has evaluated the effectiveness of fuel
treatment based on biophysical outcomes without attempting to
monetize the benefits (Butry, 2009; Hartsough et al., 2008), or has
focused on other ecosystems (Loomis et al., 2002; Mercer et al.,
2007). In a recent article, Prestemon et al. (2012) provide ranges
for the expected economic benefits of mechanical fuel treatments
that include wildfire suppression cost savings, but focus on non-
reserved timberlands in the contiguous western United States,
rather than on rangelands. Epanchin-Niell et al. (2009) develop a
simulation model to analyze the economic benefits of post-fire
rehabilitation for sagebrush rangeland ecosystems in the western
United States. While similar in geographic scope and specification
to our work, Epanchin-Niell et al. (2009) focus on post-fire reha-
bilitation treatment rather than preemptive fuel treatment.

We analyze the economic efficiency of fuel treatment for
Wyoming Sagebrush Steppe (WSS) and Mountain Big Sagebrush
(MBS) ecosystems in the Great Basin.2,3 Fig. 1 depicts the
geographic extent of WSS and MBS systems in the Great Basin. We
focus on these ecosystems because they face the two most prom-
inent resource management concerns in sagebrush ecosystems
relative towildfire: The expansion of native conifers such as juniper
and pinyon pine (Juniperus occidentalis, Juniperus osteosperma;
Pinus monophylla, Pinus edulis) in MBS systems, and the spread of
exotic annual grasses such as cheatgrass (Bromus tectorum) in both
systems. Native confiner expansion (henceforth pinyonejuniper
expansion) from their historic ranges in upland areas into lower-
elevation MBS plant communities has led to an increase in the
accumulation of woody fuels and has shifted fire regimes in MBS
systems from relatively frequent (10e50 years mean fire return
interval), low severity wildfires to less frequent (>50 years mean
fire return interval), high severity wildfires (Miller and Rose, 1999;
Miller and Tausch, 2001; Miller and Heyerdahl, 2008). On the other
hand, annual grass invasion at the expense of native perennial
species has led to increased wildfire frequency on invaded range-
lands (mean fire return intervals reduced from >50 years to <10
years), and, because invasive annuals are often the first species to
reemerge post-fire, an escalating cycle of increasingly frequent
wildfires (Miller and Tausch, 2001; Whisenant, 1990).4
2 The Great Basin is the high desert region between the Rocky Mountain and
Sierra Nevada Mountains, comprising most of Nevada and parts of Utah, California,
Idaho, and Oregon.

3 WSS systems are generally found at elevations of roughly between 4700 and
6500 feet above sea level and comprise roughly 37.8 million acres in the Great Basin
(26% of the 145 million acre Great Basin). MBS systems are generally found at el-
evations of over 6500 feet and comprise 9.1 million acres in the Great Basin (6.3% of
total area in the Great Basin). Acreages were calculated using Great Basin Resto-
ration Initiative data (sagemap.wr.usgs.gov; USGS, 2011).

4 More generally, pinyonejuniper expansion and annual grass invasion have been
identified as major contributors to the decline of sagebrush ecosystems in the Great
Basin (Miller and Tausch, 2001; Pellant, 1994), causing these ecosystems to be
considered among the most endangered in the North America (Bunting et al., 2002;
Noss et al., 1995). Moreover, without effective management, pinyonejuniper
expansion and annual grass invasion is expected to continue in sagebrush eco-
systems (Miller et al., 2000; Wisdom et al., 2002).
We capture rangeland ecosystem dynamics in theWSS and MBS
systems using an approach based on the state-and-transition
model (STM) framework from rangeland ecology (Stringham
et al., 2003). The STM framework has been used to describe ran-
geland ecosystems in North America (Bagchi et al., 2012; Bashari
et al., 2008; Knapp et al., 2011) and throughout the world (Asefa
et al., 2003; Chartier and Rostagno, 2006; Sankaran and
Anderson, 2009; Standish et al., 2009). In this framework, an
ecosystem is described as being in one of several ecological states
that are separated by ecological thresholds. In rangeland ecosys-
tems, transitions between ecological states can be triggered by
natural events such as drought, wildfire, and invasive plants, or by
human activities such as excessive livestock grazing. Moreover,
transitions can only be reversed with active (and often expensive)
management effort (Briske et al., 2006; McIver et al., 2010). More
degraded states are typically less likely to be rehabilitated with
management effort, while the healthier states are more resilient
and resistant to transition to degraded states (Brooks and
Chambers, 2011). The STM framework allows us to characterize
ecological dynamics in the WSS and MBS systems, as well as the
role of wildfire as a catalyst for transitions between states.
Depending on the ecological state, wildfire can be a restorative
force that helps to maintain ecosystem function within a desirable

http://sagemap.wr.usgs.gov


5 We also do not consider that fuel treatments may damage ecosystem goods and
services. For example, prescribed wildfires create smoke, risk escaping their
intended boundaries, and heavy equipment used for mechanical fuel removal may
lead to soil compaction and increased erosion.

6 Fixed costs of fuel treatment include administrative costs of project planning
and compliance, transporting equipment to and from the treatment site, and
equipment maintenance and depreciation. Variable costs include labor and mate-
rials on a per acre basis, after the fixed costs have been committed.
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ecological state, or be a destructive force that moves the ecosystem
to less desirable ecological states.

Our simulation model accounts for two main objectives of fuel
treatments (Kline, 2004; Reinhardt et al., 2008). First, fuel treat-
ments aim to reduce fuel loading and fuel characteristics to lessen
wildfire severity, and thus the expected costs of damages and
wildfire suppression. Second, fuel treatments attempt to restore
health and resiliency to ecosystems. Accounting for these two ob-
jectives of fuel treatments implies that in our simulation the
appropriate suite of treatment methods varies by ecological state.
For example, in relatively healthy ecological states, fuel treatments
involve mechanical removal of decadent sagebrush and/or native
conifers. Conversely, in degraded ecological states where invasive
annual grasses are present, fuel treatments involve both fuel
reduction and rehabilitation through herbicide application and
reseeding with desired plant species. The appropriate suites of
treatments for each ecological state considered in the simulation
are described in Section 2.2.

The success or failure of fuel treatments in sagebrush ecosys-
tems is determined in large measure by whether ecological
thresholds between states have been crossed (McIver et al., 2010).
This is problematic because it is often difficult for even experienced
rangeland ecologists to determine with certainty whether an
ecosystem has crossed a threshold between states. This uncertainty
can be costly because treatment methods that are appropriate on
one side of a threshold may be ineffective or even ecologically
destructive after the threshold has been crossed. In addition, in
situations where crossing a threshold involves a cost either in terms
of a reduction in ecological goods and services (including higher
expected wildfire suppression cost) or more expensive/less effec-
tive treatment options, uncertainty about whether or not the
thresholds has been crossed may cause land managers to treat in
circumstances where treatment is either unnecessary or could be
delayed at no cost. Our model allows us to analyze how uncertainty
about whether or not an ecological threshold between states has
been crossed influences the economic efficiency of fuel treatment.
This information is a valuable contribution to recent rangeland
ecology research that aims at improving land managers’ ability to
accurately determine whether their land has crossed a threshold
before undertaking treatment (McIver et al., 2010).

We report all results on a per-acre basis, in contrast with the
previous literature that has evaluated benefits and costs of fuel
treatment at larger spatial scales (Loomis et al., 2002; Mercer et al.,
2007; Epanchin-Niell et al., 2009). Assumptions and parameters
are chosen so that our per-acre results are scalable to larger spatial
scales. As such, relative to the previous literature, our analysis is
more directly relevant to analyzing the economic efficiency of
specific fuel treatment projects, which in practice are often small
and targeted (100 acres, 500 acres, etc.; see Rideout and Omi,
1995). In addition, reporting results in per-acre terms has the
advantage that it allows us to more readily consider how benefits
and cost of fuel treatment differ depending on ecological condi-
tion, treatment costs, wildfire-return interval, and other factors,
and to address the question of optimal treatment timing given the
dynamics of rangeland ecosystems. In particular, recent studies
have suggested that present-day fire return intervals in sagebrush
ecosystems are shorter than historic averages as a result of invasive
plants, changes in disturbance regimes, climate change, and other
factors (Baker, 2009; Romme et al., 2009). For this reason, we
examine how the economic efficiency of fuel treatment will
change as a result of current and anticipated changes in wildfire
frequency. In addition, we analyze the relationship between the
economic efficiency of fuel treatment, fuel treatment success rates,
and fuel treatment costs. This information is necessary to evaluate
the economic benefits from applied research in rangeland ecology
aimed at improving treatment success rates and lowering treat-
ment costs.

Where the literature reasonably supports ranges of model pa-
rameters and assumptions, we chose parameters and assumptions
so as not to overstate the benefits or understate the costs of fuel
treatment. As such, this article provides conservative estimates of
the net benefits of fuel treatment. Three sets of assumptions
contribute to our estimates being lower-bounds of the net benefits
of fuel treatment. First, for reasons explained in detail below, the
wildfire suppression costs data available for use in this study omit
wildfire suppression expenditures by local and state agencies,
thereby understating the full cost of wildfire suppression. Thus the
benefits of fuel treatment, which we measure as the difference in
the expected present value of cumulativewildfire suppression costs
with and without treatment, will also be understated. Second, our
analysis considers wildfire suppression costs savings as the only
benefit of fuel treatment. We do not include other benefits of fuel
treatment, including reductions in wildfire damage to private
property and public infrastructure, and improvements in wildlife
habitat, forage for livestock, recreation opportunities, erosion
control, and other ecosystem goods and services. In many circum-
stances, maintenance of these benefits may motivate fuel treat-
ment as much as reducing wildfire suppression costs.5 Third, our
analysis considers variable, but not fixed fuels treatment costs.6 By
focusing on variable costs, our analysis is relevant for the marginal
decision of whether it is economically efficient to treat an addi-
tional acre. For a specific fuel treatment project, the per-acre ex-
pected benefits from treatment must be large enough to justify
undertaking the fixed costs. Our estimates of variable treatment
costs are conservative (likely do not understate costs) in that we do
not account for potential reductions in variable costs related to
returns to scale in fuel treatment application size that have been
identified in the literature (Rummer, 2008). An important impli-
cation of having understated the benefits of fuel treatments is that
while our results allow us to conclude that treatment is economi-
cally efficient under certain conditions, we are not able to conclude
that treatment is not efficient in others.

2. Material and methods

2.1. Ecological dynamics: stylized state-and-transition models

As indicated in the Introduction, we model the WSS and MBS
ecosystems using the state-and-transition model (STM) framework
from rangeland ecology. The WSS and MBS systems are broad
ecological classifications that refer to several different ecological
sites, each of which can be represented by its own STM (SRM,1989).
The economic data (e.g., wildfire suppression costs), however, are
organized according to these broad classifications. For this reason,
rather than presenting results for specific ecological sites in the
WSS and MBS systems, we analyze two “stylized” STMs that are
intended to be broadly representative of ecological sites found in
these two systems. Important to this study, our STMs incorporate
the effects of invasive annual grasses on ecological dynamics and
fire regimes. This section describes the stylized STMs for the WSS
and MBS systems that are used in our simulation.



Table 1a
Treatment costs: Wyoming Sagebrush Steppe ($000 in 2010 dollars; 000s of acres).

Treatment method
and cost ($/acre)

Ecological state

WSS-1 WSS-2 WSS-3

Shrubs and
perennial grasses

Decadent sagebrush
with annual grasses

Invasive annual
grass dominated

Prescribed fire $19.50 NA $19.50
Brush management NA $60.22 NA
Herbicidea,b NA $51.64 $51.64
Reseedingc NA $93.55 $93.55
Total $19.50 $205.35 $164.69

a NRCS offers a range of herbicide costs to cover a variety of application methods,
herbicide, herbicide type, dosage and vegetation conditions. Herbicide application
method depends on size of area being treated, with fixed wing common for large
areas ($12.63 per acre) and ground rig ($33.35 per acre) more common for smaller
areas. Our baseline simulation assumes ground rig application with herbicide cost of
$18.29 per acre. In order to be conservative about total herbicide cost, we use the
ground rig application cost.

b The herbicide Tebuthiuron (“spike”) is the most common method to control
sagebrush on western rangelands including Utah (Julie Suhr Pierce, NRCS Utah e

personal communications).
c NRCS offers a range of seeding costs to cover a variety of dispersal methods

(aerial, ground rig, range drill) and ground preparation (none, ripper, ripper and
range disk, and ripper, range disk, furrowing, and Dixie harrow). Our baseline
simulation assumes ground rig dispersal and $10 per acre for seeding costs.
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2.1.1. Wyoming Sagebrush Steppe (WSS) system
As is illustrated in Fig. 2a, our stylized STM for the WSS system

consists of three ecological states. Perennial grasses and sagebrush
with a small presence of invasive annual grasses characterize the
“healthiest” state, which we refer to as WSS-1. Wildfire and fuel
treatment maintain the system in WSS-1; however, without wild-
fire or treatment, a moderate ecological disturbance such as
excessive spring livestock grazing will cause the system to transi-
tion over time fromWSS-1 to a new ecological state, WSS-2. WSS-2
is characterized by overgrown “decadent” sagebrush with reduced
perennial grasses and increased annual grasses. Wildfire in WSS-2
is more intense and more expensive to suppress than wildfire in
WSS-1. The transition fromWSS-2 to WSS-1 is reversible only with
rehabilitation effort, and the success of this effort is uncertain.
Moreover, because of the loss of perennial plant vigor and the
presence of annual grasses, wildfire or treatment failure in WSS-2
causes the system to transition to WSS-3. In WSS-3, invasive
annual grasses are the dominant species, wildfires occur frequently,
and the system can only be rehabilitated to WSS-1 with costly
treatments with very low success rates.

2.1.2. Mountain Big Sagebrush (MBS) system
Our stylized STM for the MBS system consists of three ecological

states with the first state having two phases (Fig. 2b). Perennial
grasses and sagebrush with minimal presence of invasive annual
grasses characterizeMBS-1a. Naturally occurring rangeland fire and
fuel treatments maintain the system in MBS-1a; however, if the
system remains MBS-1a for a long period without fire or fuel
management, it will transition into the early stages of pinyoneju-
niper expansion, a new phase within the MBS-1 state that we refer
to as MBS-1b. The transition to MBS-1b can be reversed with
rehabilitation effort, and fire in MBS-1balso restores the system to
MBS-1a. Without fire or fuel treatment, the system will eventually
transition from MBS-1b to a closed-canopy pinyonejuniper state,
Fig. 2. (a) Wyoming Sagebrush Steppe stylized state-and-transition mod
MBS-2, with minimal to no native perennial grasses and invasive
annual grasses dominating in the understory. MBS-2 is character-
ized by less frequent but far more costly wildfires relative to MBS-
1a or MBS-1b. A system in MBS-2 can be rehabilitated to MBS-1a
only with costly management action, the success of which is un-
certain. If wildfire occurs or a treatment fails in MBS-2, the system
immediately transitions to MBS-3, the annual grass dominated
state. As in the WSS system, once invasive annual grasses dominate
the system, wildfires are larger and occur more frequently. MBS-3
el. (b) Mountain Big Sagebrush stylized state-and-transition model.



Table 1b
Treatment cost: Mountain Big Sagebrush ($000 in 2010 dollars; 000s of acres).

Treatment method
and cost ($/acre)

Ecological state

MBS-1a MBS-1b MBS-2 MBS-3

Shrubs and
perennial grasses

Pinyonejuniper,
shrubs and
perennial grasses

Closed-canopy
pinyonejuniper
with annual grass

Invasive annual
grass dominated

Prescribed fire $19.50 $45.50 NA $19.50
Brush managementa NA NA $60.22 NA
Herbicideb NA NA $51.64 $51.64
Reseedingb NA NA $93.55 $93.55
Total $19.50 $45.50 $205.35 $164.69

a The most common method to remove undesired pinyonejuniper trees is “chaining” (Julie Suhr Pierce, NRCS Utah e personal communications). More expensive brush
management methods using bullhogs, chain saws, and bulldozers are used less often. Note that all brushmanagement costs include “mobilization costs”which are the costs of
bringing specialized brush management equipment from outside the area (Julie Suhr Pierce e personal communication). For all other treatments, mobilization costs are
assumed to be minimal and are included in per acre costs.

b See Table 1a for details on the cost information for herbicide and reseeding.
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can only be rehabilitated toMBS-1a through costly treatments with
very low success rates.
7 We match each state in the WSS and MBS models with NFDRS fuel model
categories using Hal E. Anderson’s (1982) “Aids to Determining Fuel Models for
Estimating Fire Behavior.” MBS-1a (over 6500 feet) and WSS-1 (between 4700 and
6500 feet) correspond to NFDRS fuel models T and L (perennial grasses with some
shrubs). WSS-2 (mature shrub canopy) corresponds to NFDRS fuel model B. WSS-3
and MBS-3 (invasive annual grass dominated) correspond to NFDRS fuel model A.
MBS-1b (PJ with mature shrubs) corresponds to NFDRS fuel model C. MBS-2
(Closed-canopy PJ) corresponds to NFDRS fuel model F.

8 The weighting procedure was necessary because per-acre wildfire costs in our
data are much larger for smaller wildfires than for large wildfires. The correlation
coefficient between wildfire size and per-acre suppression costs is �0.1465 for our
sample of 400 wildfires.
2.2. Data and parameters

The stylized STMs in Fig. 2 are numerically implemented to
simulate the benefits of fuel treatment. This section describes the
parameters and data used in our model. Tables 1e4 summarize all
model parameters and data described in this section, including
treatment costs, suppression costs, wildfire frequencies, and the
transitions between ecological states in the WSS and MBS systems.

2.2.1. Fuel management treatments
We assume that the appropriate suite of fuel treatments and

hence, per-acre treatment costs, varies by ecological state in the
WSS and MBS systems. Appropriate fuel treatments include pre-
scribed fire in the healthiest states, and mechanical removal of
overgrown vegetation by mastication, chaining, and chain saws in
degraded states. In all but the healthiest states, fuel treatments are
followed by rehabilitation treatment, which involves herbicide
application and reseeding with desired species that can compete
with invasive annual grasses. Information on treatment costs were
obtained from the 2011 “USDA Natural Resources Conservation
Service Utah Conservation Practice Cost Data.” This database con-
tains the typical costs of conservation practices in Utah in 2011,
including per-acre costs for the methods used in our simulation.
Tables 1a and 1b give fuel treatment costs in each state in the WSS
and MBS systems.

The results of fuel treatment are uncertain (McIver et al., 2010).
For this reason, we model treatment success as probabilistic.
Because there is substantial debate among rangeland ecologists
about treatment success rates given the complexity of the rela-
tionship between treatment success rates and factors such as pre-
cipitation, soil structure and timing of treatments, the default
success rates used in this simulation (Tables 4a and 4b) were cho-
sen to be rough approximations under typical conditions in WSS
and MBS systems. We evaluate the sensitivity of our results to
treatment success rates in Section 3.3.

2.2.2. Wildfire suppression costs
Since the benefit of treatment is measured in terms of fire

suppression cost averted, per-acre suppression costs represent the
most important set of parameters in ourmodel.We use data for 400
wildfires occurring from 1995 through 2007 in USFS Region 4, the
Intermountain Region (which includes Wyoming, Utah, Idaho,
Nevada, and portions of Colorado and California), that are compiled
according to the procedure described in Gebert et al. (2007). The
available data for wildfire suppression expenditures do not include
a variable that directly identifies STM state at the site of each fire;
however, the data do include the National Fire Danger Rating Sys-
tem (NFDRS) fuel model category that is used by USFS, BLM, and
other agencies to evaluate wildfire suppression strategy during a
wildfire event. The correspondence between the ecological states
in our stylized STMs for the WSS and MBS systems and the NFDRS
fuel models is made based on the vegetation composition de-
scriptions and is summarized in Table 2.7 In the simulation, a
random draw from a state-specific sample of per-acre wildfire
suppression expenditures is taken each time a wildfire occurs. In
order for our per-acre suppression cost distributions to reflect the
fact that a given acre is more likely to burn in a large fire than in a
small fire, we draw from a weighted distribution of per-acre wild-
fire suppression costs, with wildfire size used as weights.8 Tables 3a
and 3b summarizewildfire size and suppression costs for each state
in the WSS and MBS systems.

The wildfire suppression cost data used in this article likely
understate actual per-acre wildfire suppression costs for two rea-
sons. First, the data include only wildfires of over 100 acres
(300 acres after 2003) that “escaped” initial suppression efforts by
local and state agencies. Because smaller wildfires tend to have
larger per-acre suppression costs than larger wildfires, their
exclusion implies that fires with higher per-acre costs may be un-
derrepresented in the distributions of per-acrewildfire suppression
costs that we draw from in our simulation. The magnitude of the
understatement of treatment benefit, however, is likely to be small
because the vast majority of burned acres are burned in large
wildfires. In the data available through the Western Great Basin
Coordinating Center on all wildfires in the western Great Basin
between 2000 and 2007, “escaped” wildfires account for 99.7% of
acres burned inWSS-1, 97.0% inWSS-2, and 98.9% inWSS-3. Similar
patterns are observed in the MBS system.



Table 2
Wildfire suppression costs ($000 in 2010 dollars; 000s of acres).

Ecological state NFDRS fuel modela No. obs Avg. $/fireb Total expenditure ($) Avg. acres/fire Total acres burned Avg. $/acrec

Full sample 400 1715.4 686,145.4 6.8 2725.3 251.8
WSS-1 T and L 43 441.9 19,003.7 2.3 100.0 190.1
WSS-2 B 14 844.1 11,817.6 1.1 15.0 788.7
WSS-3 A 12 1314.8 15,777.5 12.9 154.2 102.3
MBS-1a T and L 22 627.1 13,795.5 2.3 49.8 276.8
MBS-1b C 21 840.0 17,639.7 2.3 49.0 359.8
MBS-2 F 9 723.8 6514.1 1.5 13.6 478.6
MBS-3 A 4 5146.5 20,586.0 13.4 53.4 385.3

a See text for discussion of National Fire Danger Rating System (NFDRS) fuel models.
b Wildfire suppression costs are reported in constant 2010 dollars, using the “Government Consumption Expenditures and Gross Investment e Non-Defense” price index

from the U.S. Department of Commerce’s Bureau of Economic Analysis as part of the National Income and Product Accounts. This price index captures the change in the prices
relevant for wildfire suppression costs (e.g., labor, fuel, and mechanical equipment costs).

c This table shows that there are large differences in average wildfire suppression costs per acre between ecological states in the WSS and MBS systems. Whether these
differences in per acre wildfire suppression costs between states are driven by differences in wildfire behavior, anticipated suppression response, or other factors is an open
research question. Indeed, while previous studies have empirically analyzed the determinants of wildfire suppression expenditures (Gebert et al., 2008; Yoder and Gebert,
2012), these studies have not analyzed how these determinants vary by ecological state.
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Second, our wildfire suppression expenditures are understated
for each of the 400 fires in our sample of federal fire suppression
costs. Presumably, some resources used for wildfire suppression are
also provided by state and local agencies. However, because wild-
fire suppression expenditure data from local and state agencies are
not specifically available on a fire-by-fire basis, we were not able to
include these suppression costs in our analysis. The data used in our
analysis include wildfire suppression expenditures incurred only at
the federal level by the U.S. Forest Service for the years 1995e2003,
and expenditures incurred by both the U.S. Forest Service and the
Department of Interior for the years 2004e2007. Since total sup-
pression expenditures are understated for each of the 400 fires in
our sample, the per-acre wildfire suppression costs used in our
simulation underestimates the true per-acre costs. However, the
magnitude of this understatement is likely to be small because
either the U.S. Forest Service or the U.S. Department of Interior was
the “lead protection agency” (or “recorded protection agency”) for
the vast majority of the 400 fires in our dataset.9 U.S. Forest Service
Rocky Mountain Research Station has determined that, on average,
the U.S. Forest Service assumes over 90% of total suppression cost
for wildfires where it is the lead protection agency (Gebert et al.,
2007).

2.2.3. Wildfire frequency
Wildfire is modeled as a stochastic event that may or may not

occur in a given year. We use information on fire frequency in terms
of wildfire-return intervals, or average number of years between
two fires, to simulate stochastic wildfire occurrences. Specifically,
we assume that the annual probability of a wildfire in each state in
the WSS and MBS systems is the reciprocal of the wildfire-return
intervals reported in the “LANDFIRE Rapid Assessment Vegetation
Models,” which are available through the USFS’s Fire Effects Infor-
mation System. This is equivalent to assuming that wildfires occur
according to a geometric distribution (i.e., the probability of a
wildfire is constant and independent across years). We use infor-
mation from the “Wyoming Sagebrush Steppe” LANDFIRE model
for our WSS system (Limbach, 2011), and from the “Mountain Big
Sagebrush with Conifers” LANDFIRE model for our MBS system
(Major et al., 2011). Wildfire-return intervals for the annual grass
dominated states (WSS-3 and MBS-3) are the mean of the wildfire-
9 In particular, between 1995 and 2003, the U.S. Forest Service was the lead
protection agency for 96% of wildfires in our dataset; between 2004 and 2007,
either the U.S. Forest Service or the U.S. Department of Interior was the lead pro-
tection agency for 88% of wildfires in our dataset.
return intervals for annual grass dominated rangeland reported in
Whisenant (1990) and Stringham and Freese (2011). Tables 3a and
3b report annual wildfire probabilities used in the simulation for
the WSS and MBS systems. We assume that in any year either the
entire acre burns or none of the acre burns. This assumption does
not change the equivalence between the wildfire-return intervals
implied by our model and the wildfire-return intervals reported in
the LANDFIRE models.

2.2.4. Transitions between ecological states
We assume that the WSS and MBS systems can only remain in

the healthiest state (i.e. WSS-1 or MBS-1) for a finite number of
years in the absence of management treatment or fire before
transitioning to a degraded state (i.e. WSS-2 or MBS-2) through
ecological succession. Years to ecological transition used in the
simulation for the WSS system were taken from the “Wyoming
Sagebrush Steppe” LANDFIRE model; time to transition for the MBS
systemwas taken from the “Mountain Big Sagebrushwith Conifers”
LANDFIRE model. The number of years to transition from an
ecological state to another through ecological succession and the
wildfire-return interval in that state reported in the LANDFIRE
models and used in this article are calculated independently. This
means that the wildfire-return intervals, which are used to calcu-
late the annual probability of wildfire in each state, do not take into
account the fact that the site may transition to a new ecological
state through succession before a wildfire occurs.10 Indeed, for
WSS-1 and MBS-1b, the numbers of years to ecological transition
through succession (60 years in WSS-1; 44 years in MBS-1b) are
less than thewildfire-return intervals (107 years inWSS-1; 44 years
in MBS-1b). In these cases, on average, the systems will transition
to new state through succession before a wildfire occurs.

In addition, we assume that fire in the healthiest state in either
the WSS or MBS system resets the system to the earliest stage, or
“year 1”, in each state, i.e., the stage with the maximum number of
years until the system transitions to a degraded statewithout fire or
treatment. For example, if fire occurs in WSS-1, the system returns
to “year 1” in WSS-1 with 60 years remaining until the system
transitions to WSS-2. If fire occurs in a state where annual grasses
10 In the LANDFIRE models, the number of years to transition through succession
is the average number of years that a site will remain in an ecological state in the
absence of management treatment or wildfire before transitioning to a new state.
On the other hand, the wildfire-return interval is the average number of years
between wildfires on a site in the ecological state assuming that the site remains in
the ecological state.



Table 3a
Wildfire frequency: Wyoming Sagebrush Steppe.

WSS-1 WSS-2 WSS-3

Shrubs and perennial grasses Decadent sagebrush with annual grasses Invasive annual grass dominated

Wildfire-return interval (years) 107 75 9
Annual large fire probability 0.009 0.013 0.111
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are heavily present in the understory, as is the case in WSS-2 or
MBS-2, fire will cause the system to transition to the invasive
annual grass dominated state. When the system is in the invasive
annual grass dominated state, either WSS-3 or MBS-3, it will
remain in this state after wildfire. Tables 4a and 4b summarize
information on transition with and without wildfire for the WSS
and MBS systems.

2.3. Simulation methods

2.3.1. Simulation methods: approach
The simulation model considers the progression of the MBS and

WSS systems with and without fuel treatments over 200 years. The
analysis focuses on differences between these two scenarios in
terms of wildfire occurrence, wildfire suppression costs, and other
factors. The model treats wildfire occurrences, treatment success
given that treatment is undertaken, and per-acre wildfire sup-
pression costs in each year as stochastic parameters. Each run of the
model considers the progression of the system in the “treatment”
and “no treatment” scenarios with different randomly generated
realizations of these stochastic parameters in each year. The sto-
chastic parameters lead to substantial variation in key variables,
including wildfire suppression cost savings, between model runs.
For this reason, results in this article are reported for 10,000 model
runs, and the discussion focuses on the expected values of key
variables, which are calculated as the means of these variables over
the 10,000 model runs. All results are reported on a per-acre basis.
All monetary results are presented in constant 2010 dollars; to
calculate net present values, all dollar values are discounted at a
constant rate of 3%. A 3% discount rate is held to be the best esti-
mate of the social time preference of consumers and is used by U.S.
federal agencies such as the National Oceanic and Atmospheric
Administration, the Department of the Interior, and the U.S. Envi-
ronmental Protection Agency (Loomis, 2002).

The mechanics of our simulation model are as follows. The state
of the system in year t is described by two state variables. First, SRt;m
is the ecological state in year t (e.g., for the WSS system, SRt;m can be
either WSS-1, WSS-2, or WSS-3). The subscriptm indicates themth
run of the simulation model. The superscript R indicates the
treatment scenario; R ¼ T for a “treatment” scenario and R ¼ NT for
a “no treatment” scenario. Second, sRt;m is the number of years that
the system has been in SRt;m in year t.11 The random variable ~P

R
t;m is

equal to 1 if a wildfire occurs in year t and 0 otherwise. The prob-
ability that a wildfire occurs in year t (i.e., the probability that
PRt;m ¼ 1 in year t) is pðSRt;mÞ, which depends on the ecological state
in year t. If a wildfire occurs in year t, then the wildfire suppression
cost is a random variable, eWC

R
t;m, from a state-specific distribution

of per-acre wildfire suppression costs.12
11 The variable sRt;m is necessary because, as is explained above, the WSS and MBS
systems can only remain in the healthiest state for a finite amount of time in the
absence of management treatment or wildfire before transitioning to a degraded
state.
12 The state-specific annual wildfire probabilities used in the simulation are given
in Tables 3a and 3b.
In the treatment scenario, fuel treatments may take place in
years where wildfire does not occur.13 Each model run considers a
treatment schedule that determines if a treatment occurs in year t
given STt;m and sTt;m. The variable TT

t;m is equal to 1 if a treatment
occurs in year t and 0 otherwise. In years where a fuel treatment is
performed (i.e., when TTt;m ¼ 1), the random variable ~Q

R
t;m is equal

to 1 if the treatment is successful and 0 is the treatment fails. The
probability of treatment success in year t is qðSRt;mÞ, which depends
on the ecological state in year t. When fuel treatment is performed,
a state-specific treatment cost, TCR

t;m, is incurred.
14

The state of the system in the following year, SRtþ1;m and sRtþ1;m;

depends on the state of the system in year t, STtþ1;m and sTtþ1;m on
whether or not a wildfire occurred in year t, and, in years where
treatment takes place, whether or not the treatment is successful.
Tables 4a and 4b summarize information on how wildfire and fuel
treatment success and failure influence transitions between
ecological states for the WSS and MBS systems.

The “net benefits” of fuel treatment are calculated as the present
value of the reduction in cumulative wildfire suppression costs
resulting from treatment less the present value of total treatment
costs. The net benefits for from fuel treatment the mth run of the
model is given by

NPVm ¼
X200
t¼1

1
ð1þ rÞt

�
PNTt;mWCNTt;m

�
�

X200
t¼1

1
ð1þ rÞt

�
PTt;mWCTt;m

þ TTt;mTC
T
t;m

�

where r is the discount rate (r ¼ 3% for the results presented in this
article) and PRt;m and WCR

t;m, R ¼ T, NT, are the realizations of the
random variables ~P

R
t;m and gWC

R
t;m in year t in the treatment and no

treatment scenarios. The expected value of net benefits is calcu-
lated as the mean of net benefits for the 10,000 model runs

E½NPV� ¼
X10;000
m¼1

NPVm:

A positive expected value of net benefits implies that it is
economically efficient for society to pursue the treatment strategy.

Where to perform treatment on a heterogeneous landscape
given a fixed budget can be analyzed by calculating expected
benefitecost ratios for lands in different initial conditions (WSS-1,
WSS-2, etc.). Benefitecost ratios are the appropriate metric for
evaluating which types of land should be treated first because,
given a fixed budget, net benefits are maximized by treating the
land with the highest benefitecost ratios until the budget is
exhausted. The expected benefitecost of treatment ratio is given by
13 The model assumes that the year begins before wildfire season (in the spring)
and that wildfire occurs or does no not occur before treatments take place (in the
late fall/early winter).
14 As explained above, the state-specific treatment costs used in this simulation
are given in Tables 1a and 1b and the state-specific treatment success probabilities
are given in Tables 4a and 4b.
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Note that the stochastic parameters lead to variation in key
variables across model runs holding the parameter values and the
distributions for the stochastic parameters fixed. We report results
for the range of outcomes for key variables across model runs given
the realization of the stochastic parameters (i.e., wildfire occur-
rences, treatment success given that treatment is undertaken, and
per-acre wildfire suppression costs). In the analysis below, we
explore the sensitivity of our results to our assumptions about
several key parameters, including treatment costs, treatment suc-
cess rates, and wildfire frequency.

We choose to build uncertainty about fuel treatment outcomes
directly into our model through the inclusion of our stochastic
parameters in part because we consider restoration-based fuel
treatments. It is widely acknowledged that it is difficult to restore
ecosystems, rangeland or otherwise, in a reliable and predictable
manner (Sheley et al., 2011). Given this fact, evaluating the net
economic benefits of restoration-based fuel treatment requires an
economic framework that directly incorporates the probabilistic
nature of how ecosystems respond to management. In contrast to
our approach, Prestemon et al. (2012) directly build uncertainty
about the parameters into their simulation model to estimate the
expected economic benefits of mechanical fuel treatments on
timberlands in the western United States. In doing so, Prestemon
et al. are able to present a range of expected benefits from fuel
treatment given the uncertainty about model parameters; how-
ever, they are not able to analyze the uncertainty inherent in fuel
treatments outcomes.

2.3.2. Simulation methods: fuel treatment scenarios
The benefits and costs of fuel treatment are calculated for two

cases for the WSS system. First, we assume that (i) one can observe
with certainty which state the system is inWSS-1 orWSS-2, and (ii)
Table 4a
Transitions between states: Wyoming Sagebrush Steppe.

Ecological state

WSS-1 WS

Shrubs and perennial grasses Dec

Time to transition w/o wildfire 60 years / WSS-2a NA
Transition with fire / Year 1 in WSS-1 /

Successful treatment / Year 1 in WSS-1 /

Unsuccessful treatment No Change /

Prob. of treatment success 1.00 0.50

a 60 years is derived by combining Classes A and B for LANDFIRE model “Wyoming Sa

Table 3b
Wildfire Frequency: Mountain Big Sagebrush

MBS-1a MBS-1b

Shrubs and
perennial grasses

Pinyonejunip
shrubs and pe

Wildfire-return interval (years) 60 50
Annual large fire probability 0.017 0.020
it is possible to determine how many years the systemwill remain
inWSS-1 before transitioning toWSS-2.We refer to this scenario as
the “certain” threshold case. Second, we relax these two assump-
tions so that it is not possible to observe whether or not the
threshold between WSS-1 and WSS-2 has been crossed, nor is it
possible to observe the “location” of the system relative the
threshold, i.e. the number of years until the transition from WSS-1
to WSS-2 would occur without wildfire or fuel treatment. These
assumptions capture the fact that it is often difficult for experi-
enced rangeland ecologists to determine whether a system has
crossed a critical ecological threshold (McIver et al., 2010). We refer
to this second scenario as the “uncertain” threshold case. As seen
below, optimal treatment schedules differ in the two cases.

The treatment schedule in the WSS system for the certain
treatment case is as follows. In WSS-1, treatment is applied in the
final year before transition to WSS-2. As is described in Table 4a,
the WSS system can only remain in WSS-1 for 60 years in the
absence of management treatment or wildfire before transitioning
to WSS-2. It follows that it is always optimal to delay treatment in
WSS-1 until just before the systems transitions to WSS-2 because
this strategy delays the cost of treatment and, as treatment is 100%
successful in WSS-1, there is no risk associated with delaying
treatment until just before the threshold. Moreover, delaying
treatment increases the chances that the system will experience a
wildfire, which is beneficial to rangeland health in WSS-1 and
resets the system so that there is 60 years until the transition to
WSS-2.

In both WSS-2 andWSS-3, transitions between states occur as a
result of wildfire or fuel treatment. That the system does not
transition without these two factors implies that if it is not
economically efficient to treat in the current year in eitherWSS-2 or
WSS-3, then it is never efficient to treat. This also implies that if it is
S-2 WSS-3

adent sagebrush with annual grasses Invasive annual grass dominated

NA
WSS-3 Stay in WSS-3
Year 1 in WSS-1 / Year 1 in WSS-1
WSS-3 No Change
0 0.025

gebrush Steppe” (Limbach, 2011).

MBS-2 MBS-3

er,
rennial grasses

Closed-canopy pinyone
juniper with annual grass

Invasive annual
grass dominated

75 9
0.013 0.111



Table 4b
Transitions between states: Mountain Big Sagebrush.

Ecological state

MBS-1a MBS-1b MBS-2 MBS-3

Shrubs and perennial
grasses

Pinyonejuniper, shrubs
and perennial grasses

Closed-canopy pinyone
juniper with annual grass

Invasive annual grass
dominated

Time to transition w/o
wildfire

129 Years / MBS-2a 44 Years / MBS-3b NA NA

Transition with fire / Year 1 in MBS-1 / Year 1 in MBS-1 / MBS-4 Stay in MBS-4
Successful treatment / Year 1 in MBS-1 / Year 1 in MBS-1 / Year 1 in MBS-1 / Year 1 in MBS-1
Unsuccessful treatment No change No change / MBS-4 No change
Prob. of treatment success 1.00 1.00 0.500 0.025

a 129 years is derived by combining Classes A, B, and C for the LANDFIRE model “Mountain Big Sagebrush with Conifers”(Major et al., 2011).
b 44 years is derived from Class D from the LANDFIRE model “Mountain Big Sagebrush with Conifers”(Major et al., 2011).
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economically efficient to treat in WSS-3, then it will be economi-
cally efficient to perform treatment immediately following a failed
treatment until a successful treatment occurs. Repeated treatments
are not an issue in WSS-2 because we assume that treatment in
WSS-2 results in immediate transition toWSS-1 (success) orWSS-3
(failure). A successful fuel treatment applied in either WSS-2 or
WSS-3, whereby the system returns to WSS-1, is also followed up
by treatment in WSS-1 the year before transition to WSS-2.

The treatment schedule in the MBS system for the certain
treatment case is as follows. In MBS-1a and MBS-1b, treatment is
applied in the final year before transition. As described in Table 4b,
in the absence of treatment or fire, the system remains in MBS-1a
for 129 years before transitioning to MBS-1b, and remains in
MBS-1b for 44 years before transitioning to MBS-2. As in the WSS
system, it is always optimal to delay treatment in MBS-1a andMBS-
1b until just before the system transitions because this strategy
delays the cost of treatment, increases the likelihood of beneficial
wildfire, and does not reduce the chances of treatment success. In
MBS-2 and MBS-3, transitions between states occur as a result of
wildfire or fuel treatment. As in theWSS system, this implies that if
it is not economically efficient to treat MBS-2 and MBS-3 in the
Fig. 3. Net benefits from Fuel Trea
current year, then it will never be efficient to treat; and that if it is
economically efficient to treat, then it will be economically efficient
to perform treatment immediately following a failed treatment
until a successful treatment occurs. Treatments in consecutive
years do not arise in MBS-2 because we assume that treatment in
MBS-2 results in immediate transition to MBS-1a (success) or MBS-
3 (failure).

We assume that model parameters are fixed within each state.
For example, we assume that treatment costs, the probability that
treatment will be successful, annual wildfire probability, and the
expected costs of wildfire suppression are the same for every year
that the system is inWSS-1. It is reasonable to expect, however, that
some of these parameters would be different in the 1st of year of
the WSS-1 system compared to the 59th year of the WSS-1 system.
We assume that parameters are fixed within each state because we
do not know of any sources in the published or unpublished liter-
ature that describe how these parameters will change over time
with changes in vegetation conditions within a state. When and if
this information becomes available, incorporation of parameter
changes within states would be a straightforward and interesting
extension of the analytical framework presented in this article.
tment: mth model run, year t.
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3. Results and discussion

To begin, let us illustrate how the simulation output looks using
the results of 10,000 simulation runs when the initial ecological
state is WSS-1 and when no treatment is implemented. Fig. 3 re-
ports the distribution of the 10,000 runs in terms of the total
number of wildfires and cumulative suppression costs over the 200
simulation years. Due to the stochastic wildfire, both wildfire
numbers and suppression costs exhibit wide distributions. In
particular, since the cumulative costs are reported in terms of dis-
counted sum of costs over 200 years, the cost distribution is skewed
to the left.

3.1. Wyoming Sagebrush Steppe: certain threshold

Table 5 reports simulation results for the certain threshold case,
when the initial state of the system isWSS-1, WSS-2, or WSS-3. The
certain threshold results reported in Table 5 indicate that, given our
assumptions and default parameters, the expected net benefits of
treatment are positive only in WSS-1. In particular, expected net
benefits from fuel treatment are $271.70 per acre in WSS-1, with a
benefitecost ratio of 13.3. Treatment in WSS-1 is economically
efficient because it is relatively inexpensive ($19.50 per acre), 100%
successful, and leads to a large reduction in the number of wildfires
because it prevents transition of the system to WSS-2 and WSS-3.
Fuel treatment is not economically efficient in WSS-2 because the
appropriate treatment is expensive ($205.35 per acre) relative to
expected benefits from treatment ($132.80 in expected wildfire
suppression cost savings). An important reason why expected cost
savings are low is that treatment in WSS-2 is successful only 50% of
the time and the consequences of treatment failure is that the
system transitions toWSS-3, which entails more frequent wildfires.
This is reflected in that treatment in WSS-2 only leads to a reduc-
tion in the number of wildfires from 15.2 to 12.1 over 200 years. In
WSS-3, fuel treatment is effective at reducing wildfire suppression
costs ($139.10 in expected wildfire suppression costs savings), but
given the low probability of treatment success (2.5%), fuel treat-
ment in WSS-3 is cost prohibitive. The expected net benefits of
treatment reported on Table 5 for the WSS-3 system are significant
because they find that treatment in WSS-3 is not economically
efficient; however, the magnitude of the loss in net benefits from
treatment in WSS-3 is inflated because the model predicts that
treatment will take place in successive years until a successful
treatment occurs even though treatment in WSS-3 is not efficient
Table 5
Wyoming sagebrush steppe results ($ per acre; 2010 dollars).

Initial ecological state

WSS-1

Shrubs and perennial grasses

Mean number of wildfires e no treatment 15.1 (0, 26)a

Mean number of wildfires e with treatment 1.8 (0, 4)
Mean total suppression costs (NPV) e no treatment $349.8 ($0, $1141.1)
Mean total suppression costs (NPV) e with treatment $56.0 ($0, $250.5)
Mean wildfire suppression costs savings (NPV) $293.8 ($0.0, $1043.8)
Mean number of treatments 3.1 (2, 4)
Mean number of successful treatments 3.1 (2, 4)
Mean treatment costs (NPV) $22.1 ($19.7, $23.5)
Final state e no treatmentb (WSS-1, WSS-2, WSS-3) 0, 734, 9266
Final state e with treatment (WSS-1, WSS-2, WSS-3) 10,000, 0, 0
Mean wildfire suppression costs savings net of

treatment costs (NPV)
$271.7 (�$23.5, $1021.6)

Mean benefitecost ratio (NPV) 13.3

a 5th and 95th percentiles.
b ‘Final State’ is the final state of the system (WSS-1, WSS-2, or WSS-3) after 200 year
and should not be pursued in the first place. Not surprisingly, the
benefitecost ratios reported in Table 5 indicate that the land in
WSS-1 should be treated first (benefitecost ratio of 13.3), and that
treatment is not economically efficient in either WSS-2 or WSS-3
(benefitecost ratios less than one).

As is mentioned above, the stochastic parameters in the model
lead to substantial variation in key variables, including wildfire
suppression cost savings, between the 10,000 model runs used to
generate each result. To describe the variation due to the stochastic
parameters, the 5th and 95th percentiles for key variables are re-
ported in Table 5. Table 5 reveals that while fuel treatment inWSS-1
has positive expected value of net benefits ($271.70), there are
model runs where the net benefits from treatment are much larger
than this expected value (the 95th percentile is $1021.60) and there
aremodel runs where the benefits from treatment are negative (the
5th percentile is �$23.50). The runs of the model with negative net
benefits are simply runs where the realization of the stochastic
parameters is such that the system transitions to WSS-2 without
treatment but experience little wildfire and suppression costs, and,
as such, the treatment does not result in an appreciable, if any,
reduction in wildfire suppression costs. These results highlight the
limitations of drawing conclusions about the efficacy of fuel treat-
ments in an experimental setting by comparing wildfire activity on
a small set of sites, some that have experienced fuel treatments and
some that have not. In particular, ex-post analysis will sometimes
suggest that treatments had negative net benefits even in circum-
stances where ex-ante treatments were economically justified on
the basis of expected wildfire suppression cost savings.

Treated land in WSS-1 will always remain in WSS-1; in contrast,
without treatment, the model predicts that after 200 years the
systems will have transitioned to WSS-2 7.3% of the time and to
WSS-3 92.7% of the time. This indicates that treatment in WSS-1
serves to avoid the long-run conversion of the system to an
annual grass dominated state (WSS-3). Treated land in WSS-2 is
evenly split betweenWSS-1 andWSS-3 in terms of the ending state
after 200 years because of the 50% treatment success rate; however,
the fact that the net benefits of treatment in WSS-2 are negative
means that the model suggests that treatment should not be pur-
sued inWSS-2 despite the fact that it helps prevent the transition to
WSS-3. Similarly, repeated treatment in WSS-3 over a 200-year
horizon will almost always lead to the rehabilitation of the land to
WSS-1 (98.9%), but the cost of repeated treatment (expected NPV of
$2526.9) does not justify the reduction inwildfire suppression costs
(expected NPV of $139.1). Hence, despite the fact that repeated
WSS-2 WSS-3

Decadent sagebrush with annual grasses Invasive annual grass dominated

15.2 (0, 27) 22.2 (15, 30)
12.1 (0, 28) 6.4 (1, 17)
$364.2 ($0, $1218.6) $389.8 ($149.6, $703.0)
$231.4 ($0, $658.9) $250.7 ($2.8, $607.6)
$132.8 (�$430.7 $934.1 ) $139.1 ($0.6, $418.5)
2.0 (1, 4) 41.8 (5, 121)
1.5 (0, 4) 2.5 (1, 4)
$204.4 ($205.4, $209.3) $2526.9 ($469.5, $4974.9)
0, 731, 9269 0, 0, 10,000
4949, 0, 5051 9885, 0, 115
�$71.6 (�$636.1, $727.8) �$2782.5 (�$4965.1, �$107.5)

0.7 0.06

s.



a

b

Fig. 4. (a) Distribution of the total number of wildfire over 200 years under no treatment (initial state ¼ WSS-1, 10,000 runs). (b) Distribution of the total wildfire suppression costs
over 200 years under no treatment (initial state ¼ WSS-1, 10,000 runs).
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treatment in WSS-3 will lead to close to 100% rehabilitation, it is
still economically efficient for society to leave lands in WSS-3 from
the perspective of reduced wildfire suppression expenditure.

3.2. Wyoming Sagebrush Steppe: uncertain threshold

In this section we examine how uncertainty about the location
of the system relative to the ecological threshold separating WSS-1
and WSS-2 influences the net benefits of fuel treatment, and
analyze how improved information regarding threshold location
changes the timing and efficiency of fuel treatments. To simulate
threshold uncertainty, we assume that the transition between
WSS-1 and WSS-2 can occur with equal probability in each year
within a range of years. In particular, we consider the cases where
the threshold between WSS-1 and WSS-2 is located with equal
probability between the 46th and 75th year, the 31st and 90th year,
the 16th and 105th year, and the 1st and 120th year after the system
resets to year 1 in WSS-1 (e.g., after a fire in WSS-1 or a successful
treatment in any state). The year intervals were selected to bracket
year 60 (e.g., the 46th year to 75th year interval is 15 years on either
side of year 60), which is the average number of years for a WSS
system to transition from WSS-1 to WSS-2 through ecological
succession. Fig. 4 describes the expected net benefits of imple-
mentingWSS-1 treatment (prescribed fire at $19.50 per acre) under
the assumption that WSS-1 treatment is successful 100% of the
time if the system is still in WSS-1, but is ineffective when applied
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after the system has crossed the (uncertain) threshold to WSS-2.15

For the each of the four cases of threshold uncertainty considered in
Fig. 4, the expected net benefits of treatment are reported under
different assumptions about which year treatment is applied indi-
cated by the horizontal axis, i.e., treatment is applied 20 years after
year 1 inWSS-1, treatment is applied 30 years after year 1 inWSS-1,
etc. For the each of the four cases, the peak of the graph corre-
sponds to the treatment year that maximizes expected net benefits
from treatment given the uncertain threshold.

The uncertain threshold case involves two costs relative to the
certain threshold case: the cost of treating too late and the cost of
treating too early. Delaying treatment when the threshold is un-
certain involves the risk of treating after the system has transi-
tioned to WSS-2. The WSS-1 treatment is ineffective in WSS-2 and
naturally occurring wildfire in WSS-2 will push the system toWSS-
3. Treating earlier, on the other hand, involves the cost of bearing
the treatment expenses earlier than necessary under a positive
discount rate. Treating too early also involves the opportunity cost
of a beneficial wildfire that may occur while the system is inWSS-1.

The peaks of the curves in Fig. 4 indicate the expected net
benefits associated with the optimal treatment timing under the
four cases. For the cases where the threshold to WSS-2 is located
between the 46th and 75th year and the 31st and 90th year, the costs
associated with delaying treatment (i.e., the risk of crossing the
threshold to WSS-2 during the period of delay) are always greater
than the benefits of delaying treatment (i.e., the benefits of delaying
the cost of treatment and increasing the chance of a beneficial
wildfire). For these two cases, the expected net benefits are highest
if treatment is implemented in the final year before there is a
positive probability of transition to WSS-1. As in the certain
threshold case reported in Section 3.1, it is always optimal to delay
treatment when it is certain that the system is in WSS-1. For the
cases where the threshold is located between the 16th and 105th
15 We do not report the results for the case when the appropriate treatment in
WSS-2 is used (a combination of herbicide treatment, brush management, and
reseeding at $205.35 per acre) because we find that WSS-2 treatment is never
economically efficient in the uncertain threshold case under the assumptions that it
is successful 100% of the time in WSS-1 and 50% of the time in WSS-2.
year and 1st and 120th year, the benefits of delaying treatment are
greater than the costs in the early period of uncertainty. In part, this
reflects the fact that when the period of uncertainty increases in
length, the probability of the threshold being crossed each year and,
hence, the risk from delaying treatment is smaller relative to when
the period of uncertainty is shorter. Net benefits from treatment are
highest in year 20 for the case where the threshold is located be-
tween the 16th and 105th year and in year 25 in the case with
threshold between 1st and 120th year.

Fig. 4 also demonstrates that the expected net benefits of
treatment under optimal timing increase when there is less un-
certainty about the ecological threshold separating WSS-1 and
WSS-2 (i.e., when the interval overwhich there is uncertainty about
threshold location is shorter). The net benefits are highest when the
threshold between WSS-1 and WSS-2 is crossed with certainty in
the 61st year ($271.70; see Section 3.1), and decline to $34.56 in the
case with threshold in 46the75th year, $32.90 in the case with
31ste90th year, $26.10 in the case with 16the105th year, and
$14.90 in the case with 1ste120th year. Expected net benefits in-
creasewhen there is less uncertainty about the ecological threshold
separating WSS-1 and WSS-2 because the reduction in uncertainty
allows treatment to be delayed without the risk of treating after the
transition to WSS-2.

In each of the four uncertain threshold cases considered in Fig. 5,
there is a point beyondwhich the net benefits become negative and
it is no longer economically efficient to apply WSS-1 treatment.
This is because the probability of having crossed the threshold to
WSS-2 increases each year, and the probability of a treatment being
effective declines each year. For example, for the case where the
threshold to WSS-2 is located between the 46th and 75th year, the
expected benefit of treatment becomes zero in year 70, even
though there is still a chance that the threshold has not crossed for
5 more years.
3.3. Treatment costs and treatment success rate

In this section, we analyze the relationship between fuel treat-
ment success rate, treatment cost, and expected net benefits for the
certain threshold case in theWSS system. Evaluating the sensitivity
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of our results to treatment success rates is important in part
because there is little information regarding fuel treatment success
rates available in the published literature. Not surprisingly, we find
that the net benefit from treatment increases monotonically in
treatment success rate for treatment in WSS-2 and WSS-3. Recall
from Section 3.1 that treatment is not economically efficient in
either state under our default assumptions (i.e., a treatment success
rate of 50% in WSS-2 and of 2.5% in WSS-3). Given our default
treatment cost of $205.35 per acre, we find that treating inWSS-2 is
economically efficient for success rates of 75% or higher; for WSS-3,
treatment is economically efficient for success rates of 52% or
higher at the default cost of $164.69 per acre. From this exercise, we
conclude that the qualitative results are somewhat sensitive to the
treatment success rate in WSS-2 but not in WSS-3. Treatment in
WSS-2 may or may not be economically efficient at the success rate
within �50% of the default value, while economic inefficiency of
treatment inWSS-3 is robust in the vicinity of the default treatment
success rate. These results also indicate that treatment that
a

b

Fig. 6. (a) Break-even treatment costs for given treatment success rates in WSS-2
attempts to rehabilitate already degraded rangelands to WSS-2 can
become economically efficient at sufficiently high treatment suc-
cess rates, which may be attained through using alternative treat-
ment methods, increasing the application intensity, or applying the
results of scientific research aimed at increasing the effectiveness of
fuel treatments.

Next, we consider the “break-even” treatment cost for a range of
treatment success rates. For given treatment success rate, the
break-even treatment cost is defined so that the expected net
benefits from treatment predicted by the simulation model are not
statistically different from zero at the 10% level by a two-sided t-
test. Fig. 6a,b illustrates the “break-even” treatment cost as well as
the default treatment cost/success rate combination used in the
simulations. The region below the “break-even” curve (the shaded
region in Fig. 6a,b) contains all economically efficient treatment
cost/success rate combinations given our assumptions. The figures
confirm that our default treatment cost/success rate combinations
in WSS-2 and WSS-3 fall outside the shaded area, and that
. (b) Break-even treatment costs for given treatment success rates in WSS-3.



Table 6
Impacts of shorter fire return intervals inWSS-2 on benefits and costs. Bold numbers signify that these numbers refer to the fire return intervals inWSS-2 listed in the top row.

Fire return interval in WSS-2 (years)

Initial state ¼ WSS-1 75 50 25 15 5
Mean total suppression costs (NPV) e no treatment $349.80 $463.90 $662.00 $798.20 $1013.00
Mean total suppression costs (NPV) e with treatment $56.00 $59.10 $57.30 $57.70 $59.20
Mean treatment costs (NPV) $22.10 $22.09 $22.09 $22.08 $22.08
Mean wildfire suppression costs savings net of treatment costs (NPV) $271.70 $382.70 $582.50 $718.50 $931.70
Mean benefitecost ratio (NPV) 13.3 18.3 27.4 33.5 43.2

Initial State ¼ WSS-2 75 50 25 15 5
Mean total suppression costs (NPV) e no treatment $364.20 $480.50 $686.50 $832.30 $1051.40
Mean total suppression costs (NPV) e with treatment $231.40 $232.90 $258.80 $278.00 $415.00
Mean treatment costs (NPV) $204.40 $202.92 $198.16 $193.36 $164.69
Mean wildfire suppression costs savings net of treatment costs (NPV) �$71.60 $44.60 $229.50 $360.90 $471.70
Mean benefitecost ratio (NPV) 0.7 1.2 2.2 2.9 3.9

Table 7
Mountain Big Sagebrush results ($ per acre; 2010 dollars).

Initial ecological state

MBS-1a MBS-1b MBS-2 MBS-3

Shrubs and perennial
grasses

Pinyonejuniper,
shrubs and perennial
grasses

Closed-canopy pinyone
juniper with annual grass

Invasive annual grass
dominated

Mean number of wildfires e no treatment 6.6 (1, 18)a 14.7 (0, 26) 15.0 (0, 26) 22.0 (15, 29)
Mean number of wildfires e with treatment 3.4 (1, 7) 3.4 (1, 7) 12.8 (1, 28) 7.5 (2, 17)
Mean total suppression costs (NPV) e no treatment $273.4 ($1.1, $770.2) $560.7 ($0, $1903.3) $576.2 ($0, $1937.4) $1447.7 ($352.5, $2883.6)
Mean total suppression costs (NPV)e with treatment $164.3 ($1.3, $539.0) $158.2 ($1.3, $498.2 ) $793.0 ($5.9, $2443.6) $894.1 ($28.5, $2381.1)
Mean wildfire suppression costs savings (NPV) $109.1 $402.5 �$216.8 $553.6

($-252.6, $521.2) (�$80.9, $1575.9) (�$1885.3, $1183.1) ($7.5, $1719.4)
Mean number of treatments 1.2 (1, 2) 1.1 (1, 2) 1.02 (1, 1) 39.7 (3, 119)
Mean number of successful treatments 1.2 (1, 2) 1.1 (1, 2) 0.5 (0, 1) 1.0 (1, 1)
Mean treatment costs (NPV) $19.3 ($19.5, $19.9) $44.7 ($45.5, $45.7) $202.5 ($205.4, $205.4) $2886.1 ($465.8, $4958.7)
Final state e no treatmentb (MSS-1a, -1b, -2, -3) 5328, 394, 719, 3559 171, 6, 759, 9064 0, 0, 769, 9231 0, 0, 0, 10,000
Final state e with treatment (MSS-1a, -1b, -2, -3) 10,000, 0, 0, 0 9462, 538, 0, 0 4455, 2, 5258 9182, 599, 14, 205
Mean wildfire suppression costs savings net of

treatment costs (NPV)
$89.8 (�$272.1, $502.7) $357.9 (�$126.4, $1530.4) �$419.3 ($2090.7, $977.7) �$2,332.5 (�$4927.8, $937.0)

Mean benefitecost ratio (NPV) 5.7 9.0 1.1 0.2

a 5th and 95th percentiles.
b ‘Final State’ is the final state of the system (MBS-1a, MBS-1b, MBS-2, or MBS-3) after 200 years.
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treatment in both states could become economically efficient if
either the cost of treatment were lowered or the treatment success
rate were increased.

3.4. Wildfire frequency

Recent studies suggest that current fire return intervals on
sagebrush rangelands are shorter relative to historic averages as a
result of invasive plants, changes in disturbance regimes, climate
change, and other factors (Baker, 2009; Romme et al., 2009).
Because of these current and anticipated changes in wildfire fre-
quency, in this sectionwe reconsider the economic efficiency of fuel
treatment for a range of wildfire frequencies for the certain
threshold case in the WSS system. We focus on changes in wildfire
frequencies in WSS-2 because it is believed that this state has
experienced large changes in wildfire frequencies relative to his-
toric averages as a result of annual grass invasion.16
16 While there is evidence that invasive annual grasses have reduced wildfire-
return intervals in general on rangeland in the Great Basin of the western United
States (Whisenant, 1990; Balch et al., 2013), there is not published evidence that we
are aware of that establishes how an increase in the prevalence of invasive annual
grasses in the understory of sagebrush dominated state (WSS-2) will influence the
wildfire-return intervals. For example, Balch et al. (2013) do not distinguish be-
tween “sagebrush steppe” rangeland and “sagebrush steppe” rangeland with a
cheatgrass grass as a prominent component of the understory when they establish
wildfire-return intervals for sagebrush steppe rangelands.
Table 6 lists the mean wildfire suppression costs with and
without treatment, mean treatment costs, mean net benefits, and
benefitecost ratios under different fire return intervals in WSS-2
for the cases where the initial state is WSS-1 and WSS-2. The re-
sults reported in Table 6 indicate that shorter fire return intervals
lead to large increases in the mean wildfire suppression costs
without treatment. For example, when the initial state isWSS-1, the
mean total suppression cost without treatment increases from
$349.80 for the default fire return interval in WSS-2 of 75 years to
$463.90 for a return interval of 50 years and $662.00 for a fire re-
turn interval of 25 years. This increase in expected wildfire sup-
pression costs without treatment implies that even a small
reduction in the fire return interval inWSS-2, say from our baseline
of 75 years to 50 years, will make fuel treatments in WSS-2
economically efficient. If, for example, the fire return interval in
WSS-2 is shortened to 25 years because of the presence of annual
grasses, then the net economic benefits from treatment in WSS-1
are $582.50 compared to $271.70 under our baseline fire return
interval of 75 years; the net economic benefits from treatment in
WSS-2 are $229.50 compared to �$71.60 under our baseline as-
sumptions. We believe that fire intervals of 25 years or less are
plausible for WSS-2 when annual grasses dominate the understory.
Finally, the benefitecost ratios in Table 6 indicate that treatment is
economically efficient in WSS-2 for wildfire-return intervals in
WSS-2 of 50 years or shorter. The results also indicate that for any
wildfire-return interval in WSS-2, the benefitecost ratio is higher
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for treating WSS-1 lands than for WSS-2 lands. This suggests that
given a limited budget, land in WSS-1 should receive treatment
land in WSS-2 regardless of the wildfire-return interval in WSS-2.

3.5. Mountain Big Sagebrush: certain threshold

Table 7 reports the results from the simulationmodel in theMBS
system for the certain threshold case. We find that, given our as-
sumptions and default parameters, the expected net benefits from
fuel treatment are $89.80 per acre in MBS-1a and $357.90 per acre
in MBS-1b, and that fuel treatment is not economically efficient in
either MBS-2 or MBS-3. These results mirror the results from the
WSS system, where fuel treatments are economically efficient only
in the healthiest ecological states. As in theWSS system, treatments
are efficient in the healthiest states because treatment is 100%
successful, relatively inexpensive, and prevents transition to MBS-2
and MBS-3, which entail frequent wildfires that are expensive to
suppress. In MBS-2, average wildfire suppression costs are higher
with fuel treatment than without. This counterintuitive result is
driven by the consequences of treatment failure in MBS-2, which
results in the systems transitioning to MBS-3, the annual grass
dominated state, and more frequent wildfire and higher wildfire
suppression costs. Because of the high cost of treatment failure in
MBS-2, average wildfire suppression costs are lower if treatment is
not applied, despite the high cost of wildfire suppression in MBS-2
and the fact that the land will transition to MBS-3 after a wildfire.
Similarly, fuel treatment is not efficient in MBS-3, despite the large
wildfire suppression cost saving associated with rehabilitation to
MBS-1, because of very low treatment success rates and relatively
high treatment costs. The average benefitecost ratio is 5.7 in MBS-
1a and 9.0 in MBS-1b, which are both smaller than the average
benefitecost ratio in WSS-1 of 13.3. This indicates that on a het-
erogeneous landscape, land in WSS-1 should be given priority for
fuel treatment, followed by land in MBS-1b then land in MBS-1a.

4. Conclusions

In this article we developed a simulation model for evaluating
the economic efficiency of fuel treatments that are used to reduce
the frequency and expected costs of wildfire and to maintain
ecosystem health. We used this model to provide the first esti-
mates, to our knowledge, of the economic efficiency of fuel treat-
ments for rangeland systems in general, and for the Wyoming
Sagebrush Steppe and Mountain Big Sagebrush ecosystems in the
Great Basin in particular. We found that, on the basis of wildfire
suppression costs averted, fuel treatment is economically efficient
when the two ecosystems are in their healthiest ecological states,
and that treatment is not efficient when the systems are in
degraded ecological states dominated by invasive plants. The large
economic returns to fuel treatments on healthy rangeland ($271.70
per acre in the healthiest state in the WSS system and $357.90 per
acre in the early stages of pinyonejuniper expansion in the MBS
system) reflect the fact that in both systems, the transition to
degraded ecological states dominated by invasive plants would
lead to permanently higher wildfire frequencies and suppression
costs. These results provide quantitative support for the often-held
view among rangeland managers and ecologists that the most
efficient use of landmanagement resources in systems under threat
from invasive plants is to maintain ecological health and resiliency
on healthy rangeland rather than to rehabilitate invaded rangeland.

Somewhat surprisingly, we found that fuel treatment is not
economically efficient in degraded ecological states in either the
WSS or MBS systems despite the fact that these treatments are
often successful at rehabilitating degraded rangeland and pre-
venting permanent domination by invasive annual grasses. Given
the ecological benefits of treating degraded land, it is possible that
our model would predict treatments on degraded rangeland are
economically efficient if we were able to expand our analysis to
include economic benefits of fuel treatments in addition to wildfire
suppression cost savings. Relevant ecosystem goods and services
affected by fuel treatment include reduced wildfire damage to
public infrastructure and private property, and improvements in
wildlife habitat, livestock forage, recreation opportunities, and
erosion control. In order to provide a full-accounting of the benefits
and costs of fuel treatments and other land management practices
on rangelands, further research is needed to quantify how
ecosystem goods and services other than wildfire suppression cost
vary with rangeland ecological conditions.

We addressed the question of where to perform fuel treatments
on an ecologically heterogeneous landscape given a fixed man-
agement budget by calculating benefitecost ratios of treatment in
different ecological states. We found that fuel treatments in the
healthiest state in the WSS system have the largest benefitecost
ratio. This result suggests that treating healthy land in the WSS
system is the most efficient use of public resources for fuel man-
agement. Our analysis, however, does not consider how treatment
costs, treatment success rates, wildfire-return intervals, and wild-
fire suppression costs change over a heterogeneous landscape
because of factors such as slope, aspect, wind behavior, spatial spill-
over effects, etc. Integrating these factors into an analysis of how to
target fuel treatments would require incorporating economic in-
formation into a fully spatial landscape-scale ecological simulation
model such as Shang et al. (2004). Including economic information
into a more sophisticated landscape simulation model should be
considered a long-run goal of the literature in economics on fuel
treatments.

In addition to analyzing the economic efficiency of fuel treat-
ments, we addressed several practical questions relevant for fuel
management policy on Great Basin rangelands. In particular, we
found that uncertainty about the location of thresholds between
ecological states lowers the expected economic benefits of fuel
treatments. This result suggests that there may be significant eco-
nomic returns to research aimed at determining whether range-
land systems have crossed thresholds between ecological states. In
addition, we found that in theWSS system, fuel treatment becomes
economically efficient in degraded states dominated by invasive
annual grasses (WSS-2, WSS-3) if either treatment success rates are
substantially improved or treatment cost substantially lowered, or
some combination of the two. This result implies that research that
improves treatment success rates or lowers treatment costs could
make treatment on degraded land dominated by invasive annual
grasses economically efficient, but that these improvements would
have to be dramatic relative to the baseline values considered in
this article. Finally, we found that the shortening of historic wild-
fire-return intervals in sagebrush systems predicted by rangeland
ecologists is associated with a large increase in the cost of wildfire
suppression and, as a result, a large increase in the economic
returns from fuel treatment. Indeed, even small decreases in
wildfire-return intervals relative to the baseline values considered
in this article result in fuel treatments becoming economically
efficient on degraded lands.

More broadly, we presented in this article an analytical tool that
incorporates the factors identified by Kline (2004) as necessary for
evaluating the economic efficiency of fuel treatments. Our frame-
work accounts for the two objectives of fuel treatment e reducing
wildfire risk and restoring ecosystem health e as well as the
complex relationship between invasive plants and treatment suc-
cess. We captured ecological dynamics using stylized state-and-
transition models from rangeland ecology. Our framework can be
applied to evaluate the economic efficiency of fuel treatments in
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any ecosystems whose ecological dynamics can be described in the
state-and-transition model framework. As the state-and-transition
model framework is increasingly being adopted as protocol for data
collection and analytical structure by U.S. government agencies
such as the USDA Natural Resources Conservation Service, we
expect that the simulation model presented in this article, which
numerically implements state-and-transition model concepts, is
going to be of increasing practical value.

In addition, our framework can be easily updated to incorporate
new information onmodel parameters as it becomes available. This
ability to incorporate new information is important because many
of the parameters in the model are still subject to active research.
For example, in a recent study, Balch et al. (2013) demonstrate that
cheatgrass invasion has resulted in regional-scale increases in
wildfire activity on rangelands in the Great Basin of the western
United States, and provide estimates for wildfire-return intervals in
the region based on acreage burned in wildfires from 1980-2009
that are different from the wildfire-return intervals reported in the
sources cited and used in this article.17 In addition, our approach
can accommodate future changes in biophysical parameters, such
as wildfire-return intervals, due to climate change and other fac-
tors. The results presented in this article are, of course, contingent
on parameters used in our simulation model. As such, if parameters
in the model change, so will our conclusions on the economic ef-
ficiency of fuel treatments inWSS andMBS systems. Given this fact,
we view the ability of our framework to incorporate new infor-
mation on model parameters as it becomes available as one of the
strengths of our approach.
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