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Overview of the comparison of global maps on the human influence on terrestrial lands 
To date, the most frequently cited and relied upon map on the influence of human activities 
globally is the Human Footprint (HF) (Sanderson et al., 2002).1 The HF is an index of human 
pressure on terrestrial lands, and conversely identified the “last of the wild”, based on a 
summation of eight global data layers on 1) human population density, 2) built-up areas, 3) 
cropland, 4) pastureland, 5) night-time lights, 6) roads, 7) railroads and 8) navigable rivers. The 
HF map was originally created using data sources that reflected the land status of early 1990s, 
and recently updated to ~2009 using a similar methodology (Venter et al., 2016b).2  
 
An alternative approach to mapping terrestrial human influence has been put forth and applied in 
the U.S. (Theobald, 2010, Theobald, 2013, Theobald et al., 2016), called the human modification 
(HM) model. This model captures similar ecological stressors as the HF (e.g., human settlement, 
non-natural cover types, and roads),3 but is based on an existing threat classification system 
(Salafsky et al., 2008). The HM produces a cumulative metric based on mapping the spatial 
extent and intensity of a human activity to derive a continuous 0-1 metric that reflects the 
proportion of a landscape modified by humans. Kennedy et al. (2019) tailored this approach to 
map the cumulative degree of human modification of terrestrial lands globally at a 1-km 
resolution (referred to as the HMc map), which is publicly available on figshare (Kennedy et al., 
2018). 
 
To understand the differences in the outputs of these two maps, we compared the HF and HMc 
datasets and methodologies. Key differences between the HF and HMc methodologies are 
summarized below and in Table 1, with additional information in subsequent sections. See also 
Kennedy et al. (2019) and Venter et al. (2016b) for further details on methodological approaches 
underlying the HMc and HF maps, respectively. 
 

(i) Output resolution: Both maps were produced at 1 km resolution. The HMc map 
included input datasets that were produced at 1 km or finer resolution to minimize the 
over-estimation of human impacts due to stressor values being uniformly mapped at 
coarser scales (Halpern &  Fujita, 2013). The 2009 HF map included datasets at coarser 
native resolutions (i.e., ~4 km2 for human population, 10 km2 for pasture), which were 
then downscaled to 1 km2 to allow for temporal comparison with the earlier 1993 map. 
 

                                                 
1 Available at: http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic 
2 Available at: http://datadryad.org/resource/doi:10.5061/dryad.052q5 
3 The HF framework refers to human activities with the potential to impact or harm natural systems as “pressures”, 
whereas they are referred to as ecological “stressors” in the HM framework. Both can be considered synonymous 
and provide a measure of the human influence (disturbance or modification) of terrestrial lands. 

http://www.conservationgateway.org/ConservationPractices/lands/science/publications/Documents/HM_HF_comparison_documentation.pdf
http://www.conservationgateway.org/ConservationPractices/lands/science/publications/Documents/HM_HF_comparison_documentation.pdf
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(ii) Temporal date: Source dates of input stressor datasets varied with the HMc map being of 
more recent land status. The median date of the input datasets for the HF map was 2009 
(mean ± 1 SD = 2006 ± 3.9), whereas it was 2016 (mean = 2014 ± 2.9) for the HMc map. 
The HMc map used the most recent data to capture contemporary land status, whereas the 
HF used data sources that allowed for consistent stressors across different time periods 
(i.e., 1993 and 2009) (Venter et al., 2016b). 

 
(iii) Human stressors included: HF included 8 stressor datasets (human population density, 

built-up areas, cropland, pastureland, roads, railroads, navigable rivers, and night-time 
lights). HMc included 13 stressor datasets (human population density, built-up areas, 
cropland, livestock density, major roads, minor roads, two-tracks, railroads, mines, oil 
wells, wind turbines, powerlines, and night-time lights). For further details on these 
datasets, see respective sections below in “Comparison of the stressors”. 
 

(iv)  Calculation of a spatial extent. HF treated stressor layers as binary and assumed that 
each cell with a stressor was fully occupied, regardless of the input resolution. This 
approach may cause the final HF scores to overestimate physical footprints and be driven 
by their stressor weightings. The HMc calculated the spatial extent based on the 
proportion of converted land for built-up areas, cropland, roads, powerlines, oil wells, 
wind turbines, mines, and the log[X+1] transformed values for human population, 
livestock numbers, and night-time lights. HM spatial extents (He) ranged from 0.00 to 
1.00 on continuous scale. 
 

(v) Treatment of human access. The potential indirect effects of humans encroaching from 
conduits such as roads, navigable waterways, and coastlines were accounted for in the HF 
by buffering and applying an exponential distance decay effect 15 km from these 
features. This approach causes roads to have an over-riding effect on the spatial 
distributions of land patterns. Such indirect effects were not factored into the HMc, which 
focused on mapping the direct spatial extents of human activities.  

 
(vi)  Weighting of stressors. HF adopted a scoring system whereby each stressor was 

assigned a score (or weight) ranging from 0 to 10 that was largely categorical based on 
expert opinion, as described in (Sanderson et al., 2002). In the HMc map, HMs values for 
each stressor, s, were multiplied by its potential intensity of impact scaled from 0.00 to 
1.00. Intensity values (HMi) were determined from generalized land use coefficients that 
measure the intensity of a human activity based on the amount of different forms of 
energy and resources (e.g. water, fossil fuels, fertilizers, electricity, minerals, etc.) 
required to maintain it, termed emergy (Brown &  Ulgiati, 2002, Brown &  Vivas, 2005). 
 

(vii) Aggregation of stressors into a cumulative score. In the HF, scores were summed 
together for each 1-km2 cell to produce a cumulative score that ranged from 0 to 50. The 
assumption under this method is that multiple, overlapping stressor effects are additive. 
The HMc values per stressor were continuous ranges from 0.00 to 1.00 and aggregated 
into the cumulative HMc using the fuzzy algebraic sum (Bonham-Carter, 1994). This 
algorithm produced an increasive effect, whereby an area experiencing multiple stressors 
is given a higher modification score than those with a single stressor; but the additional 
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contribution decreases as values from other stressors overlap and ultimately converge to 
1.00. This approach accounts for cumulative effects of multiple stressors in a way that 
minimizes the bias associated with non-independent stressor layers and is robust to the 
addition of stressors as new data become available (Perkl, 2017). It also assumes that 
multiple human-induced stressors tend to be accumulative (i.e., greater than just the 
dominant stressor) but non-additive (and specifically, antagonistic), which has support in 
the empirical literature (Crain et al., 2008, Darling &  Côté, 2008).  
 

(viii) Accounting for parameter uncertainty. A source of uncertainty in both assessments is 
the weights or intensity values ascribed to each stressor. This uncertainty was assessed in 
a national-level sensitivity analysis by randomly perturbing the weighting for each 
pressure score up by 50% and down by 50% or keeping it the same (with this procedure 
repeated 100 times) (Venter et al., 2016a). This uncertainty was accounted for by 
randomly selecting intensity values using a uniform distribution between a reported 
minimum and maximum range for each stressor. This perturbation was repeated 100 
times to produce 100 cumulative HMc values that were then averaged to derive the value 
for each 1-km2 area in the final HMc map. 
 

(ix) Validation. Both datasets were subject to validation based on visual interpretation of 
high resolution satellite imagery. For the HF, stressors (i.e., built-up areas, crop lands, 
pasture lands, roads, human settlements, infrastructures and navigable waterways) were 
recorded for 3,114 1-km2 plots using a standard key and attributed a categorical score 
from 0 (none), 1 (sparse, <12%), 2 (medium, >12.5%), and 3 (dense, >50%). The degree 
of HMc was visually interpreted at 10,000 random sub-plots within 1,000 plots (~600 m 
x 600 m) on a 0 – 100 range using the Global Land Use Emergent Database protocol 
(Theobald, 2016) and based on the lowest-highest-best estimate elicitation procedure to 
reduce expert assessment biases (McBride et al., 2012, Speirs‐Bridge et al., 2010). The 
average error was estimated to be ~13% RMSE for the HF and ~14% MAE for the HMc. 
88.5 % of HF plots and 71% of HMc plots were found to be within 20% agreement 
between the visual and mapped values. We note that the estimated error is expected to 
be lower for the HF map relative to the HMc map, given that the former consisted of 
categorical scores within narrower ranges (0 – 11 for visual scores and 0 – 50 for 
mapped scores) relative to the latter with a continuous range from 0 – 100 (for both 
visual and mapped scores). 

 
(x) Differences in final scores. While the HF and HMc maps were strongly correlated, HMc 

values tended to be higher than HF values. Specifically, ~25% of comparable cells had 
higher HMc values relative to only 5% of HF values. Mean and median scores by 
country, ecoregion, and biome were also correlated between the two datasets, but the 
HMc values were consistently estimated to be higher. Despite high correlations at broad 
scales (i.e., global, biome, ecoregion, and country), spatial distributions of scores varied 
substantially within a given region. The HF map delineated 3.7 times more areas devoid 
of human stressors (i.e., HF = 0). The HF mapped ~19% of terrestrial lands without 
human influence relative to ~5% by the HMc map. The main stressors found to drive 
differences were human population density, navigable waterways, roads, cropland, 
livestock densities, and pasture. The way in which the different stressor scores were 
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aggregated also influenced differences between cumulative HF and HMc values. Refer to 
subsequent sections on the comparisons between HMc values and HF scores for further 
details.  

 
Table 1. Attributes of Human Footprint (HF) and Human Modification (HMc) methodology. 

Category HF HMc 
Name Human Footprint Human Modification 

Resolution 
1 km (2 datasets 
downscaled from 4 km, 
10 km resolution) 

1 km (all input datasets at 1 km 
native resolution or finer) 

Primary stressor datasets 

8 (human population 
density, built up areas, 
cropland, pasture, major 
roads, railroads, 
navigable rivers, night-
time lights) 

13 (human population density, 
built-up areas, cropland, livestock 
density, major roads, minor roads, 
two-tracks, railroads, mines, oil 
wells, wind turbines, powerlines, 
night-time lights) 

Source dates for stressor 
datasets (# of datasets) 

2000 (2), 2005(1), 2009 
(4), 2010 (1) 

2005 (1), 2013 (1), 2014 (2), 2015 
(1), 2016 (8) 

Calculation of footprint 

Treated each stressor 
layer as binary and 
assumed that each cell 
with a stressor was fully 
occupied (value = 1) 

Determined the proportion of the 
cell modified by each stressor per 
1-km2 area (values ranged from 0 to 
1) 

Indirect effects due to 
human access 

Accounted for by 
applying distance decay 
effect 15 km from roads, 
navigable waterways, 
and coastlines 

Not included 

Values per stressor Assigned scores from 0 – 
10, mostly categorical  

Footprint or Stress level x Intensity, 
continuous from 0 to 1 

Cumulative score Summation of cell values Applied Fuzzy Sum algorithm 
Range of output values 0 (none) – 50 (high)  0 (none) – 1 (high) 

Uncertainty techniques 
employed 

Sensitivity analysis at 
national-level assessment 

Uniform random selection of 
intensity values between min and 
max values, with 100 permutations, 
integrated into final map 

Technical validation Yes Yes 
 
 
Comparison of individual stressors 
Despite an overlap in categories of human stressors, there were differences in the source data 
layers used and how they were processed to derive scores under the different analyses (Table 2).  
 
First, although both the HMc and HF maps were produced at a 1-km resolution, the HMc 
restricted inclusion of data layers to those produced at this same resolution or finer. This was 
done to minimize the over-estimation of human impacts due to stressor values being uniformly 
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mapped at coarser scales (Halpern &  Fujita, 2013). The HF included datasets at coarser native 
resolutions (i.e., ~4 km2 for human population, 10 km2 for pasture), which were then downscaled 
to 1 km2. This allowed for the integration of pressures in the HF map that were only available at 
coarser resolutions.  
 
Second, the temporal dates of the source data layers were more recent in the HMc: median for the 
HF map was 2009 (mean ± 1 SD= 2006 ± 3.9), whereas it was 2016 (mean = 2014 ± 2.9) for the 
HMc map (Table 1).  
 
Third, the number and type of stressor data layers varied between the two maps. The HF 
included 8 stressors, of which navigable waters was one that unique to this analysis. The HMc 
included 13 stressors, of which mining, oil wells, wind turbines, and powerlines were unique. 
While the HF only included major roads, the HMc included three road types (i.e., major, minor, 
and unimproved). To capture rangeland activities, the HF included a pasture layer whereas the 
HMc included a livestock density layer. See the related sections below for further details on the 
differences between comparable stressors.
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Table 2. Stressors included in the HF and HMc maps with their associated input data sources and dates, resolutions (or positional accuracy), 
processing techniques, and scoring methods. 

Stressor HF Data 
Source - Date 

 Res. 
(km) HF – Data processing 

HF – 
Potential 

Score 

HMc Data 
Source -Date 

 Res. 
(km) HMc – Data processing 

HMc – 
Potential 
Score* 

Human 
Population 

Density 

Gridded Pop of 
World v3 

- 2010 
~4 

1. Assigned all PD > 
1000/km2 to 1000 

2. Log (PD+1) * 3.333 
3. Rounded to nearest 

integer 

0-10 
(integers) 

Gridded Pop 
of World v4 - 

2015 UN 
adjusted 
estimate 

1 

1. Assigned all PD > 4,246 
/km2 to 4,246 

2. Calculated log(PD+1) 
3. Max normalized to 1 

0-0.5 
 

Built-up 
Areas 

Night-time 
lights (DMSP-
OLS) - 2009  

1 1. Select cells with DN > 20 
2. Assign value of 10 0 or 10 

Global Human 
Settlement 

Layer -2014 
0.3 1. Calculate mean proportion 

built-up at 1km 0-1.0 

Cropland GlobCover - 
2009 0.3 1. Select cropland cells 

2. Assign value of 7 0 or 7 
Unified 

Cropland 
Layer - 2014 

0.25 1. Calculate mean proportion 
cropland at 1km 0-0.7 

Pasture 
/Grazing 

Pasture Lands - 
2000  10 

1. Max normalize percent 
pasture to 4  

2. Round to nearest integer 

0 -  4 
(integers) 

Gridded 
Livestock of 

the World V2 - 
2005  

1 

1. Calculate livestock units 
(LU) for sheep, goats, 
cows 

2. Assigned all LU > 1,000 
/km2 to 1,000 

3. Log(LU+1) 
4. Max normalize to 1 

0-0.37 

Roads gRoads - 2000 (± 500 
m) 

1. Create 1 km raster with 
values of 8 

 
2. Assign cells from 4 - 0 

based on exponential 
decay function from cells 
adjacent to roads up to 15 
km  

0 or 8  
 

0-4 
(floating) 

Major, Minor, 
Unimproved/4
w-drive Roads 

Open Street 
Map (OSM) – 

2016; 
supplemented 
with gRoads – 

2000  

(± 500m, 
20 m) 

1. Calculated road density 
per 1 km2 for each 
category 

2. Multiplied density by road 
widths (i.e., 30m, 15m, 
3m) 

3. Calculate road proportion 
of cell for each category 

Major: 0 - 
0.83 

(0.622)** 
Minor: 0 – 

0.50 
(0.475)** 

Two-tracks: 
0 – 0.2 

(0.0272)** 

Railways VMAP0 - 2000 (± 500 
m) 

1. Create 1 km raster with 
values of 8 

 
0 or 8 

OSM – 2016; 
supplemented 
with VMAP0 - 

2000 

(± 500m, 
20 m) 

1. Calculated rail density per 
km2 

2. Multiplied density by rail 
width of 10m 

3. Calculate rail proportion of 
cell  

0 – 0.83 

Navigable 
Waters 

Hydrosheds - 
2016 1 

1. Select all major rivers 
(formula used to select) 
and coastline banks 

0 – 4 
(floating) NA NA NA NA 
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within 80 km of a bank 
with night-time lights 
(DNI > 6) at least 4 km 
form bank 

2. Assign cells from 4 -0 
based on exponential 
decay function from bank 
cells up to 15 km 

Industrial 
& Mining NA NA NA NA OSM - 2016 100 m (± 

20 m) 

1. Converted polygons to 
100m raster based on cell 
majority 

2. Calculated proportion of 
1km covered by 100m 
mining cells 

0 - 1 

Powerlines NA NA NA NA 

OSM – 2016; 
supplemented 
with VMAP0 - 

2000 

(± 500m, 
20 m) 

1. Calculated powerline 
density per km2 

2. Multiplied density by 
powerline width of 15m 

3. Calculate powerline 
proportion of cell 

0 – 0.2 
(0.094)** 

Oil Wells NA NA NA NA OSM - 2016 (± 20 m) 

1. Counted number of points 
per km cell 

2. Multiplied count by 
footprint size 1.4 ha 

3. Calculate well footprint 
proportion of cell 

0 – 1.0 
(0.63)** 

Wind 
Turbines NA NA NA NA OSM - 2016 (± 20 m) 

1. Counted number of points 
per km cell 

2. Multiplied count by 
footprint size 0.14 ha 

3. Calculate turbine footprint 
proportion of cell 

0 – 0.5 
(0.128)** 

Night-time 
Lights 

Night-time 
lights (DMSP-
OLS) - 2009 

1 
1. Select cells with DN > 6 
2. Categorized into 10 equal 

area (quantile) bins 

0 – 10 
(integers) 

Night-time 
lights (DMSP-
OLS) - 2013 

1 1. Calculated log(DN+1) 
2. Max normalize to 1 

0 – 0.5 
 

* HMc values are calculated as spatial extent multiplied by intensity for each stressor. Spatial extents range from 0 to 1 but have lower max values than 1 because these values 
were multiplied by intensity values. 
**Numbers in parentheses are top values based on the calculated global footprint values for that stressor and then multiplied by a respective maximum intensity value. 



Page 8 of 35 
 

Human Population Density 
For human population density, both assessments used the Gridded Population of the World 
dataset, but with different temporal UN adjusted values (2010 for HF and 2015 for HM) 
(Doxsey-Whitfield et al., 2015). The differences in the temporal date, resolution of the input 
layers (i.e., ~4 km vs 1 km), and the valuation led to scores varying at both global and regional 
scales (Fig.1, top panel). At a regional scale (Fig. 1 bottom panel), the HMc values exhibited 
higher granularity than HF values. This is expected to result in an overestimate in the extent of 
populated areas for those categories identified by the HF. Globally, the HF had scores greater 
than zero for 83,648,065 cells (i.e., 62% of the analysis extent), which is lower than the HMc 
with 118,621,322 cells (i.e., 88% of the analysis extent). This difference, however, had little 
detectable influence on the cumulative score, because 95% of cells were assigned a HF 
population score = 0 and HMc score > 0 had values less than 0.1. The max potential score for this 
stressor was 10 (out of 10) for the HF and 0.5 (out of 1.0) for the HMc (Table 2). In both 
assessments, max pressure (for HF) or intensity (for HM) scores were allocated to areas with the 
following thresholds for population densities:  1000 people/km2 for the HF versus 4246 
people/km2 for the HMc. As a result, a greater number of the HF cells were ascribed maximum 
scores (i.e., 10). However, in the summation approach used by the HF (after 0-1 normalization), 
the maximum contribution of this stressor was 0.2 (i.e., 10/50).  
   
     HF         HMc 

 
Figure 1. Human population maps for HF globally (top-left) and Denver, CO, USA (bottom-left); 
and HMc globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote 
the highest and light yellow the lowest values in each map (zero values shown in white).  
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Built-up areas 
Built-up areas were mapped using different input datasets. The HF relied on night-time lights 
(Elvidge et al., 2001), and designated all areas with DN values > 20 as built-up with a pressure 
score of 10 (Table 2). In contrast, the HMc mapped the proportion of “built-up” areas based on 
the Global Human Settlements Layer (GHSL), which identifies the percent of buildings or 
structures at 300-m resolution (Pesaresi et al., 2013). Based on these different approaches, the 
HF designated cells as fully built-up although variation exists (Fig. 2). Globally, the HF 
classified 2,503,208 cells (i.e., 2% of the analysis extent) as built-up, whereas the HMc identified 
12,550,222 cells (i.e., 9%) with some proportion of built-up. Nearly 80% of built-up cells fell 
below a HMc score of 0.1 (or 10% of the km2 cell classified as built-up), and only 3,960 cells 
(i.e., 0.003%) had a value of 1 (or 100% built-up). Under the different scoring methods, the 
contribution of this stressor could range from 0 to 1 under HM, and 0 or 10 under HF (Table 2). 
This results in a normalized value of only 0.2 (10/50) in the overall cumulative score under the 
HF, as opposed to 1.0 under the HM. 
 
    HF            HMc 

Figure 2. Built-up maps for HF globally (top-left) and Denver, CO, USA (bottom-left); and HMc 
globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote the highest 
and light yellow the lowest values in each map (zero values shown in white). 
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Cropland 
Similar to built-up areas, cropland was also mapped using different input datasets. The HF 
mapped cropland based on agricultural land cover identified by GlobCover (European Space 
Agency, 2011), and assigned these areas with a uniform pressure score of 7 (out of 10). In 
contrast, the HMc mapped a continuous proportion of cropland within a 1-km2 cell using the 
Unified Cropland Layer. This dataset identifies the percentage of annually cultivated areas at a 
250-m resolution by harmonizing existing global, regional, and national datasets (Waldner et al., 
2016).4 Deriving HMc values from the proportion identified as cropland provided greater 
heterogeneity in this stressor relative to HF (Fig. 3). Globally, the HF classified 18,336,348 cells 
(14%) as cropland, whereas the HMc classified 29,931,668 cells (22%) comprised of some 
proportion of cropland. Approximately 16% of HMc cells or 4% of cells globally (i.e., 4,917,937 
cells) had the highest score of 0.7 or 100% cropland for the entire 1km2 area.  
 
    HF         HMc 

 
Figure 3. Cropland maps for HF globally (top-left) and Denver, CO, USA (bottom-left); and 
HMc globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote the 
highest and light yellow the lowest values in each map (zero values shown in white). 
 
 

                                                 
4 Of note, for the HM map, we assessed several different datasets for cropland, including GlobCov. Based on visual 
assessment, the Unified Cropland Layer was found to better represent global cropland extent, especially in areas of 
mixed land use with grasslands or meadows. 
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Pasture/Grazing 
To gauge the impact of grazing, the HF relied on the only dataset available on global extent of 
pasture lands (Ramankutty et al., 2008).5 In contrast, the HMc relied on the Gridded Livestock of 
the World v2 database that indicates the intensity of grazing by censuses of the cattle, sheep, and 
goats per 1-km2 (Robinson et al., 2014). Unsurprisingly, the use of different datasets resulted in 
different spatial distributions of pasture or grazing (Fig. 4). In both the HF and the HM, the 
pressure weights (or intensity values) ascribed to either pasture or grazing was relatively low 
(HF: 0.4, HM: 0.2-0.37), resulting in this stressor having a similar range of possible scores under 
the two maps (Table 2).6 Thus, the differences in the datasets underlying this stressor were not 
detected to produce substantial overall differences in cumulative scores, except on the low end of 
the spectrum.  
 
    HF         HMc 

Figure 4. Pasture/grazing maps for HF globally (top-left) and Denver, CO, USA (bottom-left); 
and HMc globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote 
the highest and light yellow the lowest values in each map (zero values shown in white). 
 
 
  

                                                 
5 For the HM, we did not include the Ramankutty et al (2008) dataset because it had a native resolution of 10 km 
and an estimated ground-date of 2000. 
6 Of note, the HM intensity values likely underestimate impacts of intense grazing/feedlots given that they can cause 
substantially more environmental damage than an area fully identified as pasture land. 
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Roads 
To gauge the impacts of roads, the HF and HMc used different datasets and scoring approaches. 
While both used gRoads v1 (Center for International Earth Science Information Network - 
CIESIN - Columbia University and Information Technology Outreach Services - ITOS - 
University of Georgia, 2013), this dataset was the only source for roads in the HF, whereas it was 
used as a supplemented to OpenStreetMap (OSM) (OpenStreetMap contributors, 2016) in the 
HM. The HF mapped only major roads, whereas the HMc mapped major roads, minor roads, and 
two-tracks. In their scoring approaches, the HF accounted for both direct and indirect influences 
of roads, whereas the HMc mapped only direct footprints. For direct influences, the HF assigned 
a pressure score of 8 to all 1-km2 cells where major roads intersected (thereby affecting 
10,028,197 cells, or 7% of terrestrial lands). For indirect influences, the HF assigned a pressure 
score of 4 and then applied an exponential decay function out to 15 km of either side of a road 
(thereby affecting 81,759,749 cells, or 60% of terrestrial lands). In contrast, the HMc estimated 
the total proportion of roads for each 1-km2 cell by calculating linear densities of each road type 
and then multiplying typical road widths (i.e., 30 m for major roads, 15 m for minor roads, and 3 
m for two-tracks). These road footprints were then multiplied by their estimated relative range of 
intensities (major roads: 0.78-0.83, minor roads: 0.39-0.50, two-tracks: 0.10-0.20). Globally, 
HMc identified 25,877,603 cells (or 19% of terrestrial lands) with some proportion of roads. Only 
those cells with dense road networks were scored to have the highest HMc value (i.e., 0.63); and 
98% of cells had cumulative road values < 0.1. This produced very different distributions of road 
impact values both globally and regionally (Fig. 5), which influenced overall cumulative scores 
for the two final maps.  
 
    HF         HMc 

Figure 5. Roads maps for HF globally (top-left) and Denver, CO, USA (bottom-left); and HMc 
globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote the highest 
and light yellow the lowest values in each map (zero values shown in white). 
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Railroads 
Similar to roads, the HF and HMc used different datasets and scoring approaches for railroads. 
Both the HF and HMc used Digital Chart of the World (DCW) vMap0 data (National Imagery 
and Mapping Agency, 1992), but only HMc supplemented this with OSM data (where available). 
The HF assigned a pressure score 8 to all 1-km2 cells intersecting a railroad. As done for roads, 
the HMc estimated the proportion of each 1-km2 cell impacted by railroad based on a linear 
density multiplied by a footprint (10 m width). These proportions were then multiplied by an 
intensity estimate (ranging from 0.78-0.83). The HF identified 2,555,926 cells with railroads (or 
1.9 % of terrestrial lands) relative to 1,738,282 cells (or 1.3%) under the HMc. Over 99% of HMc 
cells had a score < 0.1 whereas all HF railroad cells had a normalized score of 0.16 (8/50). Thus, 
while the spatial distributions of railroads were more similar than for roads (Fig. 6), the 
differences in the mapped footprints and in scoring approaches led HF to give more weight to 
this stressor than the HMc in the overall cumulative score. 
     
      HF       HMc 

Figure 6. Railroads maps for HF for Denver, CO, USA (left) and HMc for Denver, CO, USA 
(right). Dark brown values denote the highest and light yellow the lowest values in each map 
(zero values shown in white). Global map not provided because railways were not discernable at 
that scale. 
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Night-time Lights 
Both HF and HMc used night-time lights to indicate impacts from human electrical 
infrastructure, which was based on the same dataset but different sources dates (i.e., DMSP-OLS 
2009 for HF and 2013 for HM) (Elvidge et al., 2001). Unlike in the HMc where the continuous 
distribution of DN values were used, the HF excluded low-lit areas (identified as DN <=6) and 
then binned remaining values into 10 equal quantile bins. These differences led to different 
spatial distributions of this stressor (Fig. 7). Globally, the HF scored 9,845,537 cells (or 7% of 
terrestrial lands) as having some level of night-time lights, whereas the HMc identified 
19,771,406 cells (15%). Based on different pressure scores (1-10) or intensity values (0-0.5), the 
maximum contribution of this stressor to overall cumulative scores were 0.2 (10/50) for HF and 
0.5 for HMc. 
       
   HF        HMc 

 
Figure 7. Night-time lights maps for HF globally (top-left) and Denver, CO, USA (bottom-left); 
and HMc globally (top-right) and Denver, CO, USA (bottom-right). Dark brown values denote 
the highest and light yellow the lowest values in each map (zero values shown in white). 
 
 
Stressors not included in both analyses and thus no comparison is provided. 

• HF – Navigable Waters 
• HMc – Mining/Industrial, Powerlines, Wind Turbines, and Oil Wells 
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Comparison of HMc values and normalized HF scores  
To compare the two maps on a cell by cell basis, we first aligned the HF raster cells to the HMc 
raster cells. This required a vertical shift of 270 m north by the HF cells and no shift horizontally 
(i.e., east – west).7 We then selected only those cells that had a value for both HF and HMc. This 
removed 882,403 cells and 1,005,650 cells from the HF and HMc datasets, respectively; and 
maintained 133,181,983 cells for comparison. The two maps had a different number of scored 
cells due to the way in which they defined and mapped terrestrial lands and treated inland waters. 
For example, the HMc dataset excluded all cells classified as fully inundated by either freshwater 
or saltwater, whereas many inland water bodies were included in the HF dataset. Additionally, 
the HMc analysis included all 1-km2 cell with ≥ 62.5 ha of land (i.e., 1/16 of sq. km), which 
allowed greater inclusion of coastlines than detected for HF. Finally, to allow for score 
comparison, we rescaled the HF from 0-50 to 0-1 by applying a maximum normalization 
calculation. This process created maps with equal aerial extent and attributed comparable cell 
values across terrestrial lands for HMc (Fig. 8) and HF (Fig. 9).  
 

Figure 8. The HMc map displayed in equal interval bins. 
 
 
 
 
 
  
 
 

                                                 
7 Both datasets were in Mollweide projection at a 1-km resolution; thus, reprojecting or resampling modifications 
were not required (thereby eliminating related distortions). 
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Figure 9. Normalized HF map 2009 displayed in equal interval bins.   
 
Direct map comparison 
Based on a cell-by-cell comparison, HMc values and normalized HF scores were strongly 
correlated (Pearson’s r = 0.77). Based on visual assessment, each map has the majority of cells 
scored ≤ 0.4 (as shown in green hues), but differences occurred at higher values (as shown in red 
hues). This was further illustrated when examining cell counts in each 0.1 bin (Table 3): in which 
there were similar cell percentages in the 0.0-0.4 bins across the two maps, but 2x-8x more cells 
in the HMc 0.4-1.0 bins relative to HF. Further, at a global scale, absolute HMc values tended to 
be higher than HF values (HMc mean ±1SD = 0.19 ± 0.22, HMc median = 0.10; HF mean = 0.12 
± 0.14, HF median = 0.08) (Table 4). 
 
Table 3. Cell distributions of HMc and normalized HF using equal interval bins. (Note that 
Categories are greater than first number and less than or equal to the last (e.g., > 0.1 - ≤ 0.2), 
except for the 0.0 – ≤ 0.1 bin, which includes zero values.) 
Category 

Bin 
HMc Cell 

Count 
HMc Percent 

Total 
HF Cell 

Count 
HF Percent 

Total 
0.9 – 1.0 155,482 0.117% 107,339 0.081% 
0.8 – 0.9 703,625 0.528% 271,162 0.204% 
0.7 – 0.8 4,595,111 3.45% 570,012 0.428% 
0.6 – 0.7 6,595,461 4.952% 985,949 0.740% 
0.5 – 0.6 4,750,620 3.567% 1,409,378 1.058% 
0.4 – 0.5 5,659,328 4.249% 2,823,900 2.120% 
0.3 – 0.4 7,525,638 5.651% 7,258,656 5.450% 
0.2 – 0.3 12,847,558 9.647% 15,304,394 11.491% 
0.1 – 0.2 24,965,311 18.745% 28,461,076 21.370% 
0.0 – 0.1 65,383,849 49.094% 75,990,117 57.057% 
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Table 4. Global statistics for HMc and normalized HF. Note that these numbers may differ from 
published values due to this comparison being restricted to only overlapping cells. 
Analysis Mean 1 STD Median 1 MAD 
HMc 0.19 0.22 0.10 0.10 
HF 0.12 0.14 0.08 0.11 
 
 
Comparison of score differences 
Similar differences can be seen when we examined the differences between the two maps (i.e., 
HMc - normalized HF) (Fig. 10). Although ~70% of cells had absolute differences ≤ 0.1, ~25% 
of comparable cells had higher HMc values relative to only 5% HF cells (Table 5). The greatest 
pixel-level differences were in parts of North America, Europe, South and Southeast Asia, 
central Africa and Australia (Fig. 10). 
 

 
Figure 10. Difference map based on subtracting HMc from HF. Cooler colors (blue and green) 
indicate higher HMc values; warm colors (orange and red) indicate higher HF values; and yellow 
indicates cells with absolute differences of less than one. 
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Table 5. Distribution of cells based on subtracting HMc from HF. Binning and colors match the 
legend in the Fig. 11 map. Values in parentheses indicate negative values. 

Category Cell Count Percent Total 

< (0.8) 6,464 0.00% 

H
M

 H
ig

he
r (0.8) – (0.6) 191,343 0.14% 

(0.6) – (0.4) 6,017,071 4.52% 

(0.4) – (0.2) 12,574,044 9.44% 

(0.2) – (0.1) 14,128,984 10.61% 

(0.1) –  0.1 93,809,171 70.44% 

0.1 – 0.2 5,523,682 4.15% 

H
F 

H
ig

he
r 

0.2 – 0.4 919,517 0.69% 

0.4 – 0.6 11,660 0.01% 

>0.6 47 0.00% 
  
Higher HMc values were due to differences between how the two analyses calculated cumulative 
scores (i.e., HMc using a fuzzy sum algorithm and HF using simple addition). For example, a cell 
that both datasets identified as having 100% cropland as the sole stressor had two very different 
values (i.e., HMc ~0.7 and HF 0.14). Similarly, an area fully built-up had HMc values ~1.0, 
whereas HF scores would only be close to 1 in cases where human population density, built-up, 
and night-time lights had maximum scores of 10 each and at least two of three additional features 
(e.g., roads, railways, and/or navigable waters) also overlapping. Without these pressures in 
addition to population density, built-up and night-time lights, the maximum value would be 0.6 
(i.e., 30/50). Of note, this score would be similar to those designated as cropland within the HMc. 
Extreme HMc values greater than HF (i.e., -0.8) were detected to be mining areas with 2013 
night-time lights overlapping within the HMc that went undetected by the 2009 night-time lights 
used by the HF. 
 
Higher HF values tended to be cells with major roads or railroads intersecting them, without any 
other pressures. Differences related to how cells were scored for those stressors. For example, 
cells where roads intersected within the HF were always scored at 0.16 (i.e., 8/50). In contrast, 
within the HMc, the footprint of a major road was estimated and then multiplied by an estimated 
intensity; e.g., 1 km of road with a width estimate of 30 m produced a footprint of 0.03 km2 and 
multiplied by an intensity of 0.83 to derive a final score of 0.0249. Where HF scores were greater 
than 0.4, they tended to be areas where the 2009 night-time lights intersected roads and these lit 
areas were not present with the 2013 night-time lights data used in the HMc. 
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Comparison of regional-level differences 
 

 
Figure 11. Comparison of scores for Denver, Colorado, USA for (a) HMc map, (b) Normalized 
2009 HF map, and (c) Differences based on subtracting HMc from normalized HF. Cool colors 
(blue and green) indicate higher HMc values; warm colors (orange and red) indicate higher HF 
values; and yellow color indicates cells with absolute differences of less than one. 
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Comparison of areas mapped with no human influence 
In previous analyses, HF was used to identify areas devoid of human pressures (termed 
“wilderness” areas) (i.e., HF =  0) (Watson et al., 2016). Following this categorization, we 
compared the two maps with reference to their zero values and found that the HF delineated 3.7x 
more of these areas than the HM. Specifically, HF mapped ~19% of terrestrial lands without 
human influence (n = 24,744,093) relative to only ~5% by the HMc map (n = 6,697,770 cells) 
(Fig. 12).8 Further, there was only a 21% overlap between the areas mapped as having no 
influence by these two maps. When examining those cells with no HF stressors mapped but with 
HM stressors, the key drivers were human population (57% of cells) and livestock (42% of cells) 
datasets (Table 6). Conversely those cells with no HM stressors but with HF pressures, the main 
drivers were navigable waters (47% of cells), human population (22%), roads (21%), and pasture 
(9%) (Table 7).  
 

Figure 12. Areas mapped with no human pressures or stressors (i.e., HMc or HF = 0). Green 
indicates cells where both maps identified the same cells as zero (n = 5,501,167), red indicates 
where only HMc cells had zero values (n = 1,196,603), and orange indicates where only HF cells 
had zero values (n = 19,242,926).  
 

                                                 
8 Note that these numbers may differ from published values due to this comparison being restricted to only 
overlapping cells. 
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Table 6. Statistics for non-zero HMc values that overlapped HF zero cells. “Category” identifies 
those HMc stressors that contributed the most to the cumulative HMc score and had the highest 
percentage of overlap (i.e., %) with HF zero values.  
Category %  # of Cells Min Max Median  95th 

Percentile 
Mean STD 

Population 57 11,006,101 0.000001 0.449686
  

0.006407 0.061772 0.015404
  

0.023119 

Livestock 42 8,040,912 0.000001 0.370000
  

0.003620  0.075340 0.015928
  

0.030723 

Other 10 
stressors 

1 195,913 
      

HM 100 19,242,926 0.000001 0.946632
  

0.004562 0.059508 0.014436
  

0.029105
  

 
 
Table 7. Statistics for non-zero HF scores that overlapped HMc zero cells. “Category” identifies 
those HF stressors that contributed the most to the cumulative HF score and had the highest 
percentage of overlap (i.e., %) with HMc zero values. All values were rescaled from 0-1.  
Category % # of Cells Min Max Median 95th 

PCTL Mean STD 

Navigable 
Water 47 555,992 0.000943 0.08 0.04464 0.08 0.042963 0.02345 

Population 22 267,019 0.02 0.2 0.02 0.08 0.035138 0.0244 

Roads 21 251,989 0.005 0.16 0.0051 0.08 0.013726 0.02307 

Pasture 9 112,750 0.02 0.08 0.04 0.06 0.034955 0.01606 

Other 4 
pressures 1 8,853       

HF 100 1,196,603 0.000943 0.5600 0.03510 0.10197 0.042346 0.03605 
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Comparison by biome, ecoregion, and country 
Comparisons at a biome, ecoregion, and country level showed a similar pattern as the global 
scale: i.e., highly correlated values but higher overall HMc values relative to normalized HF 
scores. At the biome scale, mean and median HMc and normalized HF values were strongly 
correlated (r = 0.98 for both). At the biome scale, only the desert biome had a slightly higher HF 
median score than that of HMc (Fig. 13, Table 8). This was due to mainly to the HF mapping 
both direct and indirect effects of roads. Both datasets identified the same biomes as being the 
top five most modified (i.e., Temperate Broadleaf and Mixed Forest; Tropical and Subtropical 
Dry Broadleaf Forest; Mediterranean Forest, Woodland, and Scrub; Mangroves; Temperate 
Grasslands, Savannas, and Shrublands) and least modified (i.e., Tundra, Boreal Forest/Taiga, 
Deserts and Xeric Shrublands, and Temperate Coniferous Forests). Differences in median scores 
were higher for the highest modified biome: Temperate Broadleaf and Mixed Forests had the 
largest median score difference of 0.1556. This difference was pronounced because this biome 
had the highest amount of area identified as cropland (i.e., 3,523,999 km2 equal to 23% of the 
global cropland total) and urban (i.e., 335,108 km2 equal to 44% of the global settlement areas).  
 
Similar to the biome scale, mean and median ecoregion scores were highly correlated (r = 86 and 
0.85, respectively), but estimated to be higher by the HMc relative to the HF. Specifically, 622 of 
819 ecoregions (or 76%) had higher median HMc values (Fig. 14). 241 of these 622 ecoregions 
(or 29%) had median score differences greater than 0.1. The Veracruz Dry Forests ecoregion 
exhibited the highest median difference of 0.57, which was due to intensive cropland conversion 
undetected by the GlobCov data used in the HF analysis. In contrast, only 7 ecoregions had 
higher median HF scores greater than 0.1 relative to the HMc. The New Caledonia dry forests 
ecoregion had a HF median value 0.206 higher than the HMc median value, which we suspect is 
because the Unified Cropland Layer used in the HMc analysis failed to identify cropland that was 
mapped by GlobCov. 
 
Lastly, mean and median country-level scores were also highly corrected (r = 86 and 0.83, 
respectively), but estimated to be higher by the HMc dataset (Fig. 15). 183 of 250 countries (or 
73%) had higher HMc median scores relative to the HF. El Salvador exhibited the highest overall 
median difference of 0.42. This difference was due to a higher spatial distribution of cropland 
being identified by the Unified Cropland Layer used within the HMc relative to the GlobCov 
used within the HF. Only eight countries had higher HF median scores, all which were islands. 
This difference again likely contributed to differences in the cropland datasets, the inclusion of 
the navigable waters along coastlines, and the mapping of roads. 
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Figure 13. Comparison of HMc and normalized HF mean and median scores by biome. Dashed blue line indicates the 1:1 line.  
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Table 8.  HMc and normalized HF statistics by biome. Modified zScores based on the global median and MAD of each map. 

Biome Name Mean 
HM STD HM Max 

HM 
Median 

HM 
MAD 
HM 

Modified 
zScore HM 

Mean 
HF STD HF Max HF Median 

HF 
MAD 

HF 
Modified 

zScore HF 

Boreal Forests/Taiga 0.0374 0.0814 0.9935 0.0073 0.0073 -0.6617 0.0355 0.0736 1.0000 0.0050 0.0074 -0.6745 

Deserts and Xeric Shrublands 0.1059 0.1576 0.9950 0.0451 0.0405 -0.4036 0.0848 0.1069 1.0000 0.0600 0.0802 -0.1799 

Flooded Grasslands and Savannas 0.2480 0.2066 0.9943 0.1762 0.0725 0.4928 0.1571 0.1479 1.0000 0.1200 0.0885 0.3597 

Mangroves 0.3051 0.2237 0.9953 0.2394 0.1309 0.9244 0.2383 0.1574 1.0000 0.1927 0.1151 1.0131 

Mediterranean Forests, Woodlands, and 
Scrub 0.3373 0.2413 0.9964 0.2957 0.1914 1.3088 0.2241 0.1730 1.0000 0.1800 0.1388 0.8993 

Montane Grasslands and Shrublands 0.1634 0.1771 0.9936 0.1125 0.0834 0.0570 0.1147 0.1037 1.0000 0.1000 0.1098 0.1799 

Temperate Broadleaf and Mixed 
Forests 0.3968 0.2426 0.9975 0.3820 0.2078 1.8987 0.2600 0.1898 1.0000 0.2264 0.1685 1.3163 

Temperate Coniferous Forests 0.1561 0.1797 0.9937 0.0795 0.0674 -0.1686 0.1199 0.1453 1.0000 0.0726 0.0890 -0.0666 

Temperate Grasslands, Savannas, and 
Shrublands 0.2943 0.2299 0.9977 0.2080 0.1405 0.7097 0.1652 0.1315 1.0000 0.1371 0.1068 0.5131 

Tropical and Subtropical Coniferous 
Forests 0.2606 0.1875 0.9895 0.1952 0.0954 0.6222 0.1588 0.1183 0.9200 0.1256 0.0885 0.4101 

Tropical and Subtropical Dry Broadleaf 
Forests 0.4242 0.2360 0.9962 0.3968 0.2202 2.0002 0.2541 0.1475 1.0000 0.2650 0.1557 1.6637 

Tropical and subtropical grasslands, 
savannas, and shrublands 0.2120 0.1925 0.9961 0.1583 0.0840 0.3703 0.1265 0.0950 1.0000 0.1055 0.0808 0.2294 

Tropical and Subtropical Moist 
Broadleaf Forests 0.2310 0.2155 0.9965 0.1638 0.1134 0.4076 0.1509 0.1424 1.0000 0.1126 0.1297 0.2931 

Tundra 0.0093 0.0372 0.9596 0.0006 0.0006 -0.7073 0.0111 0.0359 0.9888 0.0000 0.0000 -0.7195 
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Figure 14. Comparison of HMc and normalized HF mean and median scores by ecoregion. Dashed blue line indicates the 1:1 line.  
 
 
  



Page 26 of 35 
 

 
Figure 15. Comparison of HMc and normalized HF mean and median scores by country. color-coded by geographical regions. Dashed 
blue line indicates the 1:1 line. 
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Comparison of HMc values and original HF scores  
We also compared these two maps based on their original values and binned by none (no 
presence of stressor), low, moderate, high, and very high. For the HMc, these classes were 
defined as 0.00, 0.00 < HMc ≤ 0.10, 0.10 < HMc ≤ 0.40, 0.40 < HMc ≤ 0.70, and 0.70 < HMc ≤ 
1.00. Low modification was ascribed to areas with median HMc values on the lower half of the 
distribution globally (≤ 0.1). Moderate modification ascribed those areas with median HMc 
values on the higher half of the distribution globally but not greater than 0.4. We used HMc = 0.4 
to demarcate a transition from a moderate to a highly-modified state, because it matches the 
critical habitat threshold of ~0.60 based on percolation theory (Gustafson &  Parker, 1992) and 
corresponds to low intensity agriculture in our assessment. High to very high breakpoint (0.7) 
was based on equal binning of the interval values in a manner consistent with empirical 
syntheses (Alkemade et al., 2009, Brown &  Vivas, 2005). For the HF, we used the classes that 
were defined as 0, 0 < HF ≤ 2, 2 < HF ≤ 6, 6 < HF ≤ 12, and 12 < HF ≤ 50 based on each bin 
covering 20% of the land surface following Venter et al. (2016a). 
 
We calculated the distribution of the terrestrial land surface that fell within these 5 classes at a 
global scale, and found that a higher percentage of land was classified as highly or very highly 
modified by HF (37%) relative to the HMc (17%) (Figure 16). In contrast, the HMc map had a 
greater percentage of land classified as low modification (44%) relative to the HF map (16%), 
while at the same time, had a lower percentage of land without any mapped human stressor (HMc 
= 5% vs. HF = 19%). 
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Figure 16. Percentage of land in none, low, moderate, high, and very high classes for (a) the HMc 
map based on none = 0.00, low = 0.00 < HMc ≤ 0.10, moderate = 0.10 < HMc ≤ 0.40, high 0.40 < 
HMc ≤ 0.70, and very high = 0.70 < HMc ≤ 1.0; and (b) the 2009 HF map based on none = 0, low 
= 0 < HF ≤ 2, moderate = 2 < HF ≤ 6, high = 6 < HF ≤ 12, and very high = 12 < HF ≤ 50. 
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We also determined an ecoregional classification into these same 5 bins based on median HMc 
and mean HF scores (following each study’s protocol). The HF map classified 72% of 
ecoregions as either highly modified (41%) or very highly modified (31%) relative to only 18% 
by the HMc map (Figure 17). In contrast, the HMc map classified most ecoregions as moderately 
modified (52%), and secondarily as low or no modification (30%). Thus, the range of map values 
and how they were binned had substantial effects on the classification of terrestrial lands and 
ecoregions as human modified by the HMc and the HF.  

Figure 17. Percentage of ecoregions in low, moderate, high, and very high classes for (a) the 
HMc map based on none = 0.00, low = 0.00 < median HMc ≤ 0.10, moderate = 0.10 < median 
HMc ≤ 0.40, high 0.40 < median HMc ≤ 0.70, and very high = 0.70 < median HMc ≤ 1.0; and (b) 
the 2009 HF map based on none = 0, low = 0 < mean HF ≤ 2, moderate = 2 < mean HF ≤ 6, high 
= 6 < mean HF ≤ 12, and very high = 12 < mean HF ≤ 50. 
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To evaluate differences at a sub-ecoregional level, we compared the HMc and HF score 
distributions, calculated on Pearson’s correlation on the values, and quantified the percentage 
overlap for cells that were identified as having either none (value = 0 for both maps) or low 
stress (HMc > 0.00-0.10 or HF = > 0-2). This ecoregional comparison was done for the 10 target 
ecoregions classified as moderately modified by the HMc map.  
 
Despite high correlations between the HMc values and the normalized HF scores aggregated at 
broad scales (i.e., global, biome, ecoregion, and country) (as described in sections above), the 
spatial distributions at smaller, ecoregional scales varied more substantially (Figures 18-19). The 
correlation between the map scores were lower than found at the global scale (r = 0.77), ranging 
from r = 0.22 - 0.67, with exception of one ecoregion (Everglades flooded grasslands). The 
overlap between low modified lands also varied widely, ranging from 0.04% to 64% overlap. 
These findings are consistent with the low overlap (21%) found between areas mapped to have 
no human stressor at a global scale by the two maps (as described above).  
 
When comparing ecoregions with a similar percentage of low modified lands but a different 
degree of fragmentation, ecoregions with a higher degree of fragmentation consistently exhibited 
a greater difference between the two maps (Figure 19). The Sierra Madre Occidental pine-oak 
forests and Cardamon Mountain rainforests ecoregions had a similar amount of low modified 
lands based on the HMc map (27% and 21%, respectively), but the former was more fragmented 
than the latter (1.5km and 4.1 km edge distance, respectively). Consequently, the spatial 
association between the HMc map and the HF map was 2 times lower for the Sierra Madre 
Occidental pine-oak forests (r = 0.40, 15% overlap) than for the Cardamon Mountain rainforests 
(r = 0.67, 30% overlap). Similarly, the Zambezian Baikiaea woodlands and the Sahelian Acacia 
savanna ecoregions had the same amount of low modified lands (41%), but the former was more 
fragmented than the latter (1.1 km and 23.0 km edge distance, respectively). Consequently, the 
spatial association between the HMc map and the HF map was 3 times lower for the Zambezian 
Baikiaea woodlands (r = 0.22, 36.33% overlap) relative to the Sahelian Acacia savanna (r = 
0.64, 64.21% overlap). Further, the ecoregion with the highest amount of fragmentation, 
Maranhão Babaçu forests (0.4 km edge distance) had the lowest percentage overlap in low 
modified lands (0.34%).  
 
Finally, we compared the delineation of low modified fragments by each map (0.00 < HMc ≤ 
0.10 or 0 < HF ≤ 2). To do so, we created a binary raster of low modified lands (coded as value 
of 1) vs. matrix areas (coded as null values) and then calculated the area of patches (in km2) 
using RegionGroup based on an eight-neighbor rule in ArcGIS v10.4 Spatial Analyst extension. 
Alongside low ecoregional overlap of low modified lands, we found differences in the number 
and the patch size distributions. Specifically, the HMc map delineated 2.3x more low modified 
fragments than the HF map (104,410 vs. 45,905, respectively) (Figure 20). Of the fragments 
delineated, the HMc map had a greater percentage of small fragments (≤ 5 km2) (77%) relative to 
the HF map (43%); whereas the HF map had a greater percentage of larger fragments (>100 km2) 
(25%) relative to the HMc map (~3%). The reduced delineation of fragments and the bias toward 
larger patches by the HF is likely due to the buffering of roads and waterways. Collectively, 
these findings indicate that the degree of human modification and their spatial configurations 
differ between these two maps at regional scales. 
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Figure 18. Comparison of the spatial patterns produced by the HMc map (left) relative to the HF 
map (right) for representative ecoregions classified as moderately modified by the HMc map. 
Pearson’s correlations and the percentage of overlap of low modified lands are shown in 
parentheses.  
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Figure 19. Comparison of the spatial patterns produced by the HMc map (left) relative to the HF 
map (right) for representative ecoregions classified as moderately modified by the HMc map. 
Pearson’s correlations and the percentage of overlap of low modified lands are shown in 
parentheses. 



Page 33 of 35 
 

 
Figure 20. The number of low modified fragments (0.00 < HMc ≤ 0.10 or 0 < HF ≤ 2) and their 
patch size distributions delineated by the HMc map (grey) relative to the HF map (black).  
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