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We answer these questions by adapting
LANDFIRE models for the Great Basin
and applying them to a study area in
NW Utah where managers are dealing
with invasive species, improper grazing
and altered fire regimes (Figure 1).
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Methods
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LANDFIRE ( ) vegetation dynamics (VDDT) models for
reference conditions are being developed nationwide.

These models are non-spatial and assume no temporal variation in
transition probabilities.

Models were developed in workshops with regional fire ecology and
management experts.

Reference conditions derived from the models are used as a benchmark
against which to measure the ecological departure of current vegetation
conditions across the country.

www.landfire.gov

In this study we seek to answer the following key questions:

A) Ecological departure with temporal variability in fire
probabilities over the last 500 years of 1000 year reference
simulations tends to be higher when spatially explicit algorithms are
used. (Figure 4)

B) Fire regime: Excluding biophysical settings where fire is
extremely rare, the difference in ecological departure is expected to
be greater for BpS that have high fire return intervals and a large
perimeter to area ratio. The fire regime for these BpS is most likely
to be influenced by fire spreading into them from neighbors.
(Table 1)

1. What are the implications of assuming non-spatially explicit dynamics
to determine reference conditions?

2. How can we leverage the knowledge invested in the reference
condition models and adapt them to
asses the future range of variability
in landscape conditions under
alternative management scenarios?

1. Use expert knowledge to
add uncharacteristic
states and transitions to
reference condition
models. (Figure 2)

2. Determine temporal
variability and fire size
distributions from local
fire history data.
(Figure 3)

3. Obtain maps of current
conditions from ground
verified remote sensing
data.

4. Develop alternative
management scenarios in
multi-stakeholder
workshops. Scenarios
address interagency
cooperation, BpS
priorities, fuel breaks, and
spatial configuration of
treatments.

5. Simulate the landscape
using both non-spatial
(VDDT) and spatially
explicit algorithms
(TELSA).

Figure 1. Study area

Figure 2. Sample state and translation model
representing primary transition types.

Figure 3. Fire history data used to derive temporal
variability and fire size distributions.

Figure 4. Ecological Departure by BpS measured every 50 years for the last 500
years of spatially explicit (TELSA) and non-spatial (VDDT) simulations with temporal
variability in fire probabilities using reference condition models.

Table 1: Summary of regression results for the difference between ecological
departure for LANDFIRE models using spatial and non-spatial simulations (r = 0.57).
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Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

Constant -0.031 0.034 0 . -0.935 0.372

Perimeter/Area 1.452 0.651 0.47 0.979 2.229 0.05

FRI 0.001 0 0.658 0.979 3.121 0.011

ANOVA

Source Sum of Squares DF Mean Square F-ratio P

Regression 0.036 2 0.018 6.483 0.016

Residual 0.028 10 0.003

C) Management simulations tested the effects of constraining
restoration funds by ownership (Yes/No), constraining restoration
funds to BpS where success rates are highest (Yes/No), using fuel
breaks to reduce the size of uncharacteristic fires (Yes/No) and
prioritizing restoration to areas adjacent to desirable habitat
(Yes/No).

We ran 16 simulations for 50 years to represent the full factorial
combination of these 4 management decisions.

Figure 5 shows sample maps of S-Classes at year fifty for (a) the
worst and (b) the best simulations in terms of ecological departure.

E) Strategies: Ownership (P= 0.026) and the interaction between ownership and
fuel breaks (P = 0.057) had a significant effect on the ecological departure of the
landscape after fifty years. Constraining restoration efforts by ownership results in
less effective results across the landscape and when restoration treatments are not
constrained by ownership, fuel breaks are effective at reducing ecological departure.
(Figure 7)

Not constraining funds by Ownership (P = 0.042) and utilizing fuel breaks
(P = 0.004) both help increase the mean diversity of habitat types at a 60ha scale on
the landscape.

D) Shannon diversity:
Figure 6 shows a map of
shannon diversity index
in habitat types using a
60 ha moving window for
the simulation that
ranked highest in mean
habitat diversity.

Figure 5a Figure 5b

Figure 6

Figure 7. Plots demonstrating the effects of ownership and fuel breaks on ecological departure and
habitat diversity. Values are means (±SE).

1. For the landscape as a whole ecological
departure measurements for reference
simulations using spatially explicit and non-
spatial algorithms were similar. This suggests
that using non-spatial models to determine
reference conditions at large scales is
adequate and less expensive than with
spatially explicit models.

2. The spatial configuration of BpS in any one
particular landscape is important in defining
reference conditions. This was demonstrated
by differences in outcomes of reference
simulations using non-spatial (VDDT) and
spatial (TELSA) modeling algorithms.

3. Results of non-spatial reference condition
models should be interpreted cautiously at
smaller scales, particularly for BpS that have a
high perimeter to area ratio and a long fire
return interval.

4. LANDFIRE reference condition models can be
adapted to ask important spatially explicit
questions about management implications for
the future range of variability in a landscape.

5. Our models for the Grouse Creek Mountains
and Raft River Mountains of NW Utah suggest
that the constraints placed on restoration by
the configuration of ownership boundaries on
the landscape is an important barrier to
improving the ecological condition of the
landscape over the next 50 years.

6. Our models also show that investing in the
creation of fuel breaks to reduce the size of
uncharacteristic fires may be effective at
improving the ecological condition of the
landscape.
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