

West Virginia Watershed Assessment Pilot Project: Little Kanawha River

Watershed Assessment

Final Report December 31, 2013

West Virginia Watershed Assessment Pilot Project: Little Kanawha River Watershed Assessment

December 31, 2013

Report Prepared by The Nature Conservancy for the West Virginia Department of Environmental Protection and the United States Environmental Protection Agency

Misty Downing Keith Fisher Diane Packett Ruth Thornton

The Nature Conservancy 194 Airport Rd Elkins, WV 26241

Phone: (304) 637-0160 E-mail: Keith Fisher, keith_fisher@tnc.org

Acknowledgments

The project team would like to acknowledge the participation of several individuals and agencies who have contributed their time and expertise throughout the assessment process, from design to completion. Special thanks to our WVDEP Project Managers, Dennis Stottlemyer and Teresa Koon, for their ongoing support and enthusiasm. Thanks also to contributing USEPA staff: Joy Gillespie, Christine Mazzarella, and Tom DeMoss. Special acknowledgment to Terry Messinger (USGS), Greg Pond (USEPA), Michael Strager (WVU), Michael Whitman (WVDEP), and Mitch Blake (WVGES), who participated in our workshops, provided valuable datasets, and made themselves available to answer questions and provide technical expertise, even outside of the workshops.

Additional thanks go out to all the participants of our technical advisory meeting, expert workshops, and end user workshops, as well as those who provided key datasets, including:

Danny Bennett (WVDNR)	Charlie Vannatter (Triad Engineering)
R. Gus Drum (USACE)	Glenn McLernon (WVDEP)
Dan Bailey (USACE)	Cindy Rank (FOLK/WVHC)
Jami Buchanan (USACE)	Terrell Ellis (WVLT)
Susan Stafford (USACE)	Kathleen Tyner (WV Rivers Coalition)
Michael Hatten (USACE)	Kara Greathouse (Region III Intergovernmental
Rebecca Albert (USACE)	Council)
Tim Craddock (WVDEP)	Doug Wood (Retired WVDEP)
Brady Gutta (WVWRI)	Herbert Andrick (NRCS)
Todd Petty (WVU)	John King (WVDEP)
Michael Schwartz (The Conservation Fund)	Brian Carr (WVDEP)
John Wirts (WVDEP - WAB)	David Dick (WVDA)
Charles Somerville (Marshall University)	Jackie Strager (WVU)
Eddie Grey (Triana Energy)	Braven Beaty (TNC)
Jim Zelenak (USFWS)	Analie Barnett (TNC)
Tom Galya (OSM)	Tamara Gagnolet (TNC)
Mariah Beeson-Kesler (OSM-Americorps)	Mark Anderson (TNC)
Nick Murray (WVDEP – WAB)	Arlene Olivero (TNC)

WVWAPP Little Kanawha River Watershed Assessment

Final Report

List of Tables

Table 1. Little Kanawha River Watershed Timeline
Table 2. Little Kanawha River Watershed - Land Use/Land Cover 2009-2010 (Maxwell et al. 2011)
Table 3. Rare Species in Little Kanawha River Watershed (WVDNR 2005)
Table 4. Species Rankings Definitions (NatureServe 2012)10
Table 5. Invasive Species in Little Kanawha River Watershed (WVDA 2011)
Table 6. Northeast Terrestrial Habitat Types – Little Kanawha River Watershed (TNC 2011c)13
Table 7. HUC12 Watershed Information (NRCS 2009, USGS 2011)16
Table 8. NWI Wetland Types - Little Kanawha River Watershed (USFWS 2010)18
Table 9. Watershed Characterization Priority Models and Indices
Table10. Definition of Objective Method Categories (Foundations of Success 2009)23
Table 11. WVDEP Reference Stream Criteria (Pond et al. 2012)24
Table 12. WVDEP Stressed Stream Criteria (Pond et al. 2012)25
Table 13. Reference and Stressed Distribution Examples for Three Types of Metrics27
Table 14. Critical Metrics for Priority Model Analysis
Table 15. Principal Components Analysis of Streams Condition Metrics
Table 16. Metrics Included in the Current Condition Analysis
Table 17. Example Values, Relative Scores, Objective Categories, and Objective Scores for Selected
Catchments and Metrics
Table 18. Example Index Objective, Relative, and Combined Results for Selected Catchments for the
Streams/Riparian Areas Model
Table 19. Example Model Objective, Relative, and Combined Results for Selected Catchments for the
Streams/Riparian Areas Model
Table 20. Example Streams Water Quality Metrics for Catchment C1235 with Value, Objective Category,
Objective Score, and Relative Score for Each Metric45
Table 21. Metrics Included in the Consolidated Analysis

WVWAPP Little Kanawha River Watershed Assessment

Final Report

List of Figures

Figure 1. West Virginia Watershed Assessment Pilot Project HUC8 Watersheds (NRCS 2009)	3
Figure 2. Little Kanawha River Watershed Study Area (USGS 2005)	1
Figure 3. Average Annual Temperature in the Little Kanawha River Watershed (USDA/NRCS 2006a)	3
Figure 4. Average Annual Precipitation in the Little Kanawha River Watershed (USDA/NRCS 2006b)	3
Figure 5. The Nature Conservancy Ecoregions – West Virginia (TNC 2009)	5
Figure 6. USEPA Level III Ecoregions – West Virginia (USEPA 2011)	5
Figure 7. Little Kanawha River Watershed – Land Use/Land Cover 2009-2010 (Maxwell et al. 2011)	7
Figure 8. Little Kanawha River HUC12 Watersheds (NRCS 2009)	15
Figure 9. Reference and Stressed Stream Catchments	25
Figure 10. Threshold Definition Model	27
Figure 11. Streams/Riparian Areas Priority Model Flowchart	42
Figure 12. Wetlands Priority Model Flowchart	43
Figure 13. Uplands Priority Model Flowchart	44
Figure 14. Consolidated Analysis Flowchart	
Figure 15a. Streams Overall Results – HUC12 Level	
Figure 15b. Streams Overall Results – Catchment Level	
Figure 16a. Streams Water Quality Index Results – HUC12 Level	
Figure 16b. Streams Water Quality Index Results – Catchment Level	56
Figure 17. Little Kanawha Watershed – Wells and Roads/Railroads (WVGES 2012, WVDOT 2011)	57
Figure 18a. Streams Water Quantity Index Results – HUC12 Level	59
Figure 18b. Streams Water Quantity Index Results – Catchment Level	
Figure 19a. Streams Hydrologic Connectivity Index Results – HUC12 Level	61
Figure 19b. Streams Hydrologic Connectivity Index Results – Catchment Level	
Figure 20a. Streams Biodiversity Index Results – HUC12 Level	63
Figure 20b. Streams Biodiversity Index Results – Catchment Level	
Figure 21a. Streams Riparian Habitat Index Results – HUC12 Level	
Figure 21b. Streams Riparian Habitat Index Results – Catchment Level4.1.2 Wetlands	67
Figure 22a. Wetlands Overall Results – HUC12 Level	
Figure 22b. Wetlands Overall Results – Catchment Level	
Figure 23a. Wetlands Water Quality Index Results – HUC12 Level	71
Figure 23b. Wetlands Water Quality Index Results – Catchment Level	72
Figure 24a. Wetlands Hydrology Index Results – HUC12 Level	74
Figure 24b. Wetlands Hydrology Index Results – Catchment Level	75
Figure 25a. Wetlands Biodiversity Index Results – HUC12 Level	76
Figure 25b. Wetlands Biodiversity Index Results – Catchment Level	77
Figure 26a. Wetlands Wetland Habitat Index Results – HUC12 Level	78
Figure 26b. Wetlands Wetland Habitat Index Results – Catchment Level	79
Figure 27a. Uplands Overall Results – HUC12 Level	81
Figure 27b. Uplands Overall Results – Catchment Level	82

Figure 28a. Uplands Habitat Connectivity Index Results – HUC12 Level	83
Figure 28b. Uplands Habitat Connectivity Index Results – Catchment Level	84
Figure 29a. Uplands Habitat Quality Index Results – HUC12 Level	85
Figure 29b. Uplands Habitat Quality Index Results – Catchment Level	86
Figure 30a. Uplands Biodiversity Index Results – HUC12 Level	87
Figure 30b. Uplands Biodiversity Index Results – Catchment Level	
Figure 31. Consolidated Analysis Overall Results	90
Figure 32. Consolidated Analysis Energy Results	91
Figure 33. Consolidated Analysis Climate Change – Resiliency (TNC 2012)	
Figure 34. Consolidated Analysis Climate Change – Regional Flow (TNC 2012)	93
Figure 35. Little Kanawha River Watershed Opportunities – Protected Lands	94
Figure 36. Little Kanawha River Watershed Opportunities – Priority Interest Areas (TNC 2012	
2011)	95
Figure 37. Possible End User Project Parameters	97
Figure 38. Protection Sample Process Flowchart	99
Figure 39. Restoration Sample Process Flowchart	101

List of Abbreviations

AMD	Acid Mine Drainage		
ARA	Active River Area		
BMP	Best Management Practice		
CRP	Conservation Reserve Program		
CSRV	Cumberlands and Southern Ridge and Valley Ecoregion		
DEM	Digital Elevation Model		
ERO	Eastern Regional Office (TNC)		
ESRI	Environmental Systems Research Institute, Inc.		
FEMA	Federal Emergency Management Agency		
FRA	Forest Reclamation Approach		
GIS	Geographic Information Systems		
GLIMPSS	Genus Level Index of Most Probable Stream Status		
NED	National Elevation Dataset		
NHD	National Hydrography Dataset		
NLCD	National Land Cover Dataset		
NPDES	National Pollutant Discharge Elimination System		
NRAC	Natural Resource Analysis Center (WVU)		
NRCS	Natural Resource Conservation Service		
NWI	National Wetlands Inventory		
PAFO	Pennsylvania Field Office (TNC)		
PCS	Permit Compliance System		
RBP	Rapid Bioassessment Protocol		
SGNC	Species in Greatest Need of Conservation		
SMCRA	Surface Mining Control and Reclamation Act		
TMDL	Total Maximum Daily Load		
TNC	The Nature Conservancy		
USEPA	United States Environmental Protection Agency		
USFS	United States Forest Service		
USGS	United States Geological Survey		
WAB	Watershed Assessment Branch (WVDEP)		
WRP	Wetland Reserve Program		
WVDA	West Virginia Department of Agriculture		
WVDEP	West Virginia Department of Environmental Protection		
WVDNR	West Virginia Division of Natural Resources		
WVDOF	West Virginia Division of Forestry		
WVFO	West Virginia Field Office (TNC)		
WVGES	West Virginia Geological and Economic Survey		
WVGISTC	West Virginia Geographic Information Systems Technical Center		
WVSAMB	West Virginia Statewide Addressing and Mapping Board		
WVU	West Virginia University		

Table of Contents

Acknowledgments	
List of Tables	
List of Figures	
List of Abbreviations	
Table of Contents	viii
Executive Summary	x
Section 1: Introduction	
1.1 Project Description	
1.2 Project Goals	
1.3 Project Objectives	
1.4 Project Process	
1.5 Little Kanawha Watershed Timeline	
1.6 Project Study Area	
1.6.1 Pilot HUC8 Watersheds	
1.6.2 Little Kanawha River Watershed Study Area	3
Section 2: Little Kanawha Watershed Description	
2.1 History/Economics	
2.2 Climate	
2.3 Natural Resources	
2.3.1 Ecoregions/Geology	
2.3.2 Land Use/Land Cover	
2.3.3 Biodiversity	
2.3.4 Streams	12
2.3.5 Vegetation Types	
Section 3: Assessment Methodology	14
3.1 Assessment Design	14
3.1.1 Planning Units	14
3.1.2 Landscape Classification	
3.1.2.1 Streams/Riparian Areas	14
3.1.2.2 Wetlands	18
3.1.2.3 Uplands	18
3.2 Priority Models	19
3.2.1 Streams/Riparian Areas Model	
3.2.2 Wetlands Model	21
3.2.3 Uplands Model	22
3.3 Ranking Procedure	23
3.3.1 Objective Classification	23
3.3.2 Objective Thresholds	25
3.3.3 Critical Metrics	28
3.3.4 Metrics Final Selection	29
3.3.5 Metric Weights	
3.3.6 Metric Scores	
3.3.7 Index Scores	
3.3.8 Model Scores	
3.3.9 Example Index and Model Scores Calculation	41

3.4 Consolidated Analysis	46
3.5 Data	
3.5.1 Data Sources	50
3.5.2 Data Quality	51
Section 4: Results and Discussion	52
4.1 Current Condition Results and Discussion	52
4.1.1 Streams/Riparian Areas	52
4.1.2 Wetlands	68
4.1.3 Uplands	80
4.2 Consolidated Analysis Results and Discussion	89
Section 5: Recommendations and Conclusions	96
5.1 Recommendations for Use	96
5.2 Potential Strategies	102
5.2.1 Streams/Riparian Areas	
5.2.2 Wetlands	103
5.2.3 Uplands	104
5.3 Data Needed and Next Steps	105
References	107
Appendix A: Detailed Data Source Information	112
Appendix B: Metrics Description and GIS Process	121
Appendix C: Detailed Full Project Timeline	145
Appendix D: Workshop Notes and Attendees	146

Executive Summary

Accurate, current, and scientifically defensible watershed assessments are invaluable in a variety of decision-making processes, such as regulatory decisions concerning permitting impacts to aquatic and terrestrial resources, and the suitability and placement of mitigation and restoration projects to offset these impacts. The West Virginia Watershed Assessment Pilot Project was initiated to address the lack of comprehensive watershed assessments in the state, which has likely contributed to a loss in area and function of critical aquatic resources, particularly in watersheds where mining, oil and gas development, or other significant land use changes are occurring. Its purpose was to advance knowledge about aquatic and terrestrial resources within the state, inform regulatory decisions, and establish priorities for protection and restoration activities. It was also intended to facilitate communication and collaboration regarding watershed protection and restoration among regulatory personnel, decision-makers, and stakeholders; to identify data gaps/needs within West Virginia; and to suggest possible future projects to generate data that may inform future assessments. The intent of this pilot project was to develop an assessment process that may be applied to all watersheds within the state, given available funding. The initial watersheds chosen for the pilot project (Lower and Upper Monongahela, Elk, Upper Guyandotte, Little Kanawha, and Gauley) are experiencing significant impacts to headwaters and wetlands as a result of development and resource extraction.

We assessed the condition and function of the Little Kanawha River watershed at two spatial scales—HUC12 watersheds and NHDPlus catchments—using a hierarchical approach that individually modeled three landscapes that characterize a watershed: streams, wetlands, and uplands. For each landscape, we defined several indices that contributed to its condition and function, e.g., water quality, habitat connectivity, and biodiversity. Each index consisted of multiple metrics, e.g., impaired streams, number of wells, and percent natural cover. Metric values were normalized and assigned to one of four categories to assess each planning unit objectively in terms of its deviation from an ideal ecological condition. Metrics were weighted and aggregated to provide index scores, which were weighted and aggregated into overall scores for each landscape. To ensure scientific validity of the assessment process, a Technical Advisory Team and an Expert Panel were assembled to provide peer review of the assessment methodology and review preliminary results throughout the project process. The two groups consisted of agency personnel, academic researchers, and individuals from the non-profit and private sectors with relevant expertise.

Results of the assessment show that all landscapes in the Little Kanawha River watershed exhibited higher quality throughout the center of the watershed, with lesser quality areas around the major urban center of Parkersburg in the far west. Development and alternative land uses such as grazing were the most influential metrics determining stream quality, with most of these impacts in the northwest. The central and southeast part of the watershed both emerged as higher quality.

Two products were developed to disseminate the assessment results to interested parties and potential users: individual watershed reports and an interactive web tool that displays the results of the analysis and selected spatial data with attribute information. The ranking of planning units generated in the assessment may be used to identify and prioritize areas within the watershed for conservation, restoration, or mitigation activities, depending upon stakeholders' goals and resources.

Section 1: Introduction

1.1 Project Description

The West Virginia Department of Environmental Protection (WVDEP) was awarded a US Environmental Protection Agency (USEPA) Region III Wetland Program Development Grant to complete a Watershed Assessment Pilot Project for five HUC8 watersheds in West Virginia. This was matched with funding from WVDEP and sub-awarded to The Nature Conservancy of West Virginia (TNC). The West Virginia Watershed Assessment Pilot Project (WVWAPP) was initiated to develop a watershed assessment process to inform conservation and management actions within the state. The project defined the methodology and data necessary to generate a peer-reviewed watershed assessment procedure and a decision support tool that can potentially be implemented for all watersheds throughout West Virginia. The information presented in these assessment reports will provide guidance to regulatory agencies, non-governmental organizations (NGOs), and other partners and decisionmakers on potential strategies and locations for protection and restoration of critical aquatic and terrestrial resources within each watershed. Examples of intended uses include: identifying areas of high conservation value for protection by state and federal government agencies or NGOs, identifying high priority sites for conducting restoration activities, and assessing cumulative watershed effects contributing to the degradation of aquatic resources.

1.2 Project Goals

- 1. Provide a rigorous assessment process that leads to the advancement of the science and protection of aquatic headwater resources within watersheds in West Virginia.
- 2. Achieve a net increase in the quantity and quality of wetlands and other aquatic resources, and their resource function, within the watershed by providing support and information to state and federal agencies, private organizations, and stakeholders.
- 3. Protect, sustain, and restore the health of people, communities, and ecosystems by supporting integrated and comprehensive approaches and partnerships.

1.3 Project Objectives

- 1. Design and test a watershed assessment process that includes analysis of cumulative watershed effects.
- 2. Suggest priorities for protection and restoration of aquatic and terrestrial resources and evaluate/rank areas within watersheds accordingly.
- 3. Provide relevant information, strategies/actions, and a decision support tool to assist partners, stakeholders, and regulatory staff with decisions affecting watershed resources.
- 4. Increase communication and collaboration regarding watershed protection and restoration among decision-makers and stakeholders.
- 5. Identify data gaps/needs within West Virginia.

1.4 Project Process

- 1. Define the watershed assessment methodology.
- 2. Complete a **Baseline analysis** that describes watershed resources, impacts, and condition.
- 3. Conduct **expert workshop 1** to review the assessment process, evaluate the data collected, obtain local information on watershed specific resources, issues, and other relevant information, and define appropriate metrics for parameters used to evaluate the importance or value/contribution of potential actions.
- 4. Conduct **expert workshop 2** to review the data collected, evaluate the conclusions of the prioritization process, and develop strategies designed to address issues within the watershed.
- 5. Complete a **future threats analysis** using results from the expert workshop to incorporate local data and apply prioritization metrics to rank potential actions and sites within the watershed; create an **opportunities layer** to indicate where protection or restoration projects might expand upon currently protected lands or priority interest areas.
- 6. Complete a draft watershed assessment. Conduct a **decision maker/end user workshop** for Little Kanawha watershed stakeholders.
- 7. Complete final assessment.

1.5 Little Kanawha Watershed Timeline

Date	Activity		
April 1, 2011	Award date, project initiation		
June 13, 2011	First Technical Advisory Team meeting		
Oct 10-11, 2012	Expert Workshop 1		
Jan 8-9, 2013	Expert Workshop 2		
May 8, 2013	Final End User Workshop and demonstration of prototype interactive web tool		
Dec 31, 2013	Final Little Kanawha River watershed assessment report and interactive web tool complete		

Table 1. Little Kanawha River Watershed Timeline

For a detailed timeline of the entire project, please see Appendix C: Detailed Full Project Timeline.

1.6 Project Study Area

1.6.1 Pilot HUC8 Watersheds

The Project Study Area includes five 8-digit HUC watersheds (referred to as HUC8 watersheds) within West Virginia (Figure 1), including: Lower and Upper Monongahela (05020005 and 05020003, respectively), Elk (05050007), Upper Guyandotte (05070101), Little Kanawha (05030203), and Gauley (05050005). Draft watershed assessments were completed in two of the five identified watersheds (the Lower/Upper Monongahela and the Elk) in the first year of the project. During the second project year, the remaining three watershed assessments were completed and the assessment methodology was refined by incorporating new data, suggestions from the technical advisory team and other experts and stakeholders, and lessons learned during the first project year. The assessment results from the five watersheds were incorporated into an interactive web tool to be accessible to a wide variety of stakeholders.

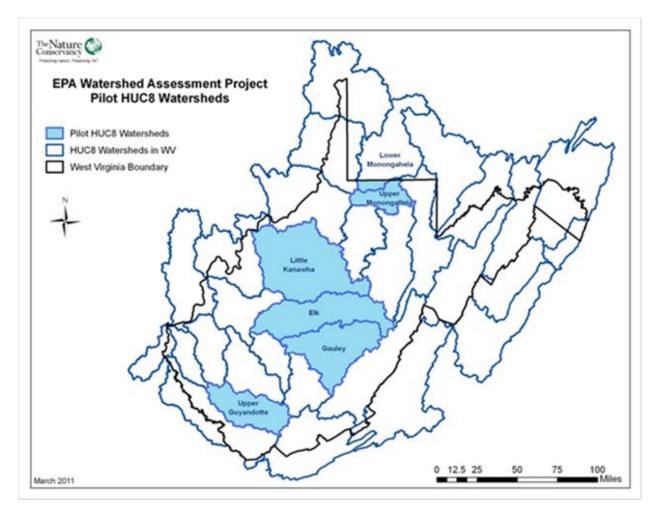


Figure 1. West Virginia Watershed Assessment Pilot Project HUC8 Watersheds (NRCS 2009)

1.6.2 Little Kanawha River Watershed Study Area

The study area considered in this report is the Little Kanawha River watershed (Figure 2). The watershed, or drainage area, covers approximately 2,308 square miles in northwest West Virginia, making it the largest of the pilot HUC8 watersheds. From its origin at Kanawha Head in Upshur County, the Little Kanawha River flows northwest for 171 miles to its confluence with the Ohio River at Parkersburg. It passes through Upshur, Lewis, Braxton, Gilmer, Calhoun, Wirt, and Wood counties, although the watershed also comprises portions of Ritchie, Doddridge, Roane, Webster, and Clay counties. The major population center is Parkersburg, and the larger towns include Blennerhassett, Spencer, Glenville, Harrisville, and Mineral Wells. A U.S. Army Corps of Engineers Dam on the river near Burnsville created Burnsville Lake as a recreational and flood control reservoir in 1976 (Gilchrist-Stalnaker 2010).

Final Report

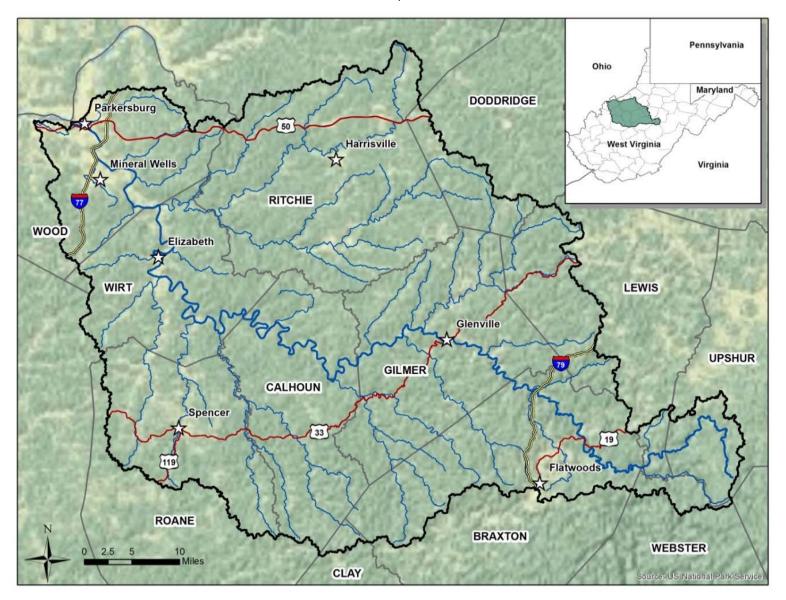


Figure 2. Little Kanawha River Watershed Study Area (USGS 2005)

Section 2: Little Kanawha Watershed Description

2.1 History/Economics

Named for the Native Americans who settled along its banks, the Little Kanawha River was, before European settlement, a route between the Ohio Valley and the hunting grounds of central West Virginia (Bonar 2012). The upper watershed was first explored by European settlers in the 1770s; the first settlement was called Bulltown, after the settlers massacred the Indians settled there under Chief Bull (Gilchrist-Stalnaker 2010). In the late 1700s Parkersburg (originally known as Newport) was settled, followed soon after by Burnsville, Gilmer Station, Glenville, Elizabeth, Grantsville, and Creston along the Little Kanawha River (Gilchrist-Stalnaker 2010, Hendricks 2010).

The Little Kanawha watershed was the center of some of the most important events in the state's political, economic, and ecological history. During the civil war, its residents fought under both flags; Calhoun County was named for John C. Calhoun, a proponent of the Southern states-rights philosophy, while its county seat was named for Union general Ulysses S. Grant (Bonar 2012). Parkersburg resident Arthur Ingraham Boremann was one of the founders of the Unionist Reorganized Government of Virginia, which led to the creation of the state of West Virginia with Boremann as its first governor (Hendricks 2010). The first school for African-American children in West Virginia was established in Parkersburg in 1862, and became part of the segregated public school system in 1866 (Hendricks 2010). Most importantly, however, the Little Kanawha watershed was the birthplace of West Virginia's oil and gas industry.

Petroleum and natural gas production started as an outgrowth of the salt industry, because oil and gas are often associated with brine deposits. Salt manufacture began in the Kanawha Valley in the late 1700s, and gas was first struck in a well drilled for salt at Charleston in 1815 (Thoenen 1964, WVGES 2013). In the Little Kanawha watershed, natural gas famously escaped along with the salt water from brine springs along the Little Kanawha near the Hughes River, resulting in the stream being named Burning Springs Run (WVGES 2013). Petroleum seepages were also found along the Little Kanawha, Big Sandy, and Hughes rivers (a colloquial name for the Little Kanawha was "Old Greasy"), and oil was struck while drilling for salt in the Burning Springs area in 1859 (Thoenen 1964). The resulting oil boom created the town of Burning Springs, lit by natural gas. Oil from the Burning Springs oil field—one of only two oil fields in the world-- was floated down the Little Kanawha River to Parkersburg (WVGES 2013) and in 1861 charters were granted for a railroad and a turnpike into the area (Thoenen 1964). In 1863, in what was arguably West Virginia's first ecological disaster, the Confederate army set fire to the oil fields and oil that was stockpiled along the river, burning an estimated 150,000 barrels (WVGES 2013). Oil production then shifted to other areas, such as the boomtown of Volcano, with hundreds of wells being drilled. As the industry expanded, to facilitate transportation of oil to Parkersburg, locks and dams were constructed along the Little Kanawha River for steamboats and barges, roads were constructed to link the new oilfields to the established roads, and small railroad companies constructed spur lines to the Northwestern Virginia Railroad. One of the country's first oil refineries was constructed at Parkersburg in 1866 (Hendricks 2010), and the first oil pipeline from Volcano to Parkersburg was constructed in

1879. By 1900, West Virginia had reached peak oil production at 16 million barrels, second only to the state of Ohio (Thoenen 1964).

Large quantities of natural gas were often found along with oil in exploratory wells, and Burning Springs oil field observers noted that the wells placed along the Burning Springs-Volcano anticline, then called the "oil break," were gas-bearing. In 1867, a dry oil well in Burning Springs produced a large quantity of gas at greater depths, and the West Virginia natural gas industry was born. Population and employment increased in the watershed as the oil and gas industries, and the infrastructures that supported them, expanded. By 1907 there were 22 gas pipelines crossing the state's boundaries, and in 1910 West Virginia was the leading producer of natural gas in the nation, accounting for 39% of total production (Thoenen 1964).

As in the rest of West Virginia, timbering had also become an important economic activity after the Civil War, and logs were floated down the Little Kanawha River to Parkersburg (Bonar 2012), but it did not achieve the importance of petroleum and natural gas. All three industries remain in the watershed today, but most important is probably Marcellus Shale gas development, which takes advantage of the new hydrofracturing and horizontal drilling technologies. Other industries in the watershed include tourism and recreation, aided by the construction of the dam on the Little Kanawha River that created Burnsville Lake in 1976 (Gilchrist-Stalnaker 2010), and small-scale agriculture such as livestock farming.

2.2 Climate

The Little Kanawha River watershed experiences a humid continental climate with variable weather patterns and a large seasonal temperature range. Prevailing winds are from the west during most of the year, but in the summer low pressure cyclonic systems often bring southerly winds and heavy precipitation (USACE 2011). As shown in Figures 3 and 4, average annual precipitation and especially temperature do not vary greatly over most of the watershed. As the elevation change becomes more pronounced at the eastern end of the watershed in the Little Kanawha headwaters area, average temperatures decrease from 53 to 49 degrees and precipitation increases from 51 to 63 inches within a distance of 10 miles.

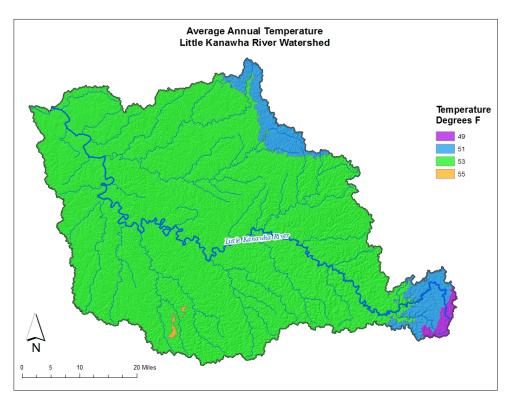
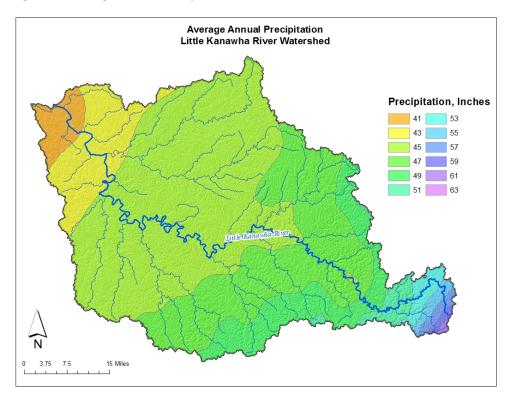
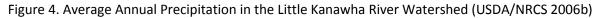
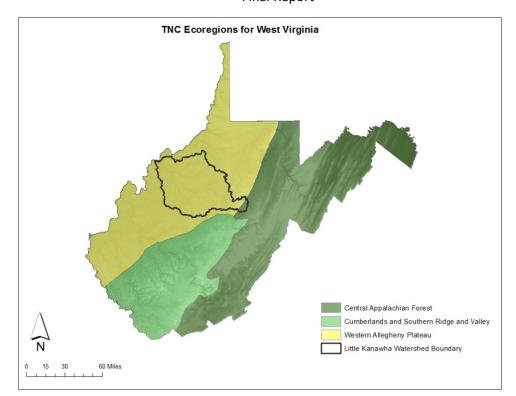




Figure 3. Average Annual Temperature in the Little Kanawha River Watershed (USDA/NRCS 2006a)


2.3 Natural Resources

2.3.1 Ecoregions/Geology

The Little Kanawha watershed lies almost entirely within the TNC Western Allegheny Plateau Ecoregion (USEPA Level III ecoregion 70), an unglaciated plateau of horizontal layers of sedimentary rock, Figure 5 (Bailey 1995, Omernik et al. 1992, Woods et al. 1999). The northwestern portion of the Little Kanawha is part of USEPA level IV ecoregion 70a, Permian Hills, a hilly region dominated by Appalachian Oak Forest with soils derived from shale, siltstone, limestone, sandstone, and coal (Woods et al. 1999). The south-central portion lies within ecoregion 70b, the Monongahela Transition Zone, an area of low hills and entrenched rivers that is less rugged and warmer than the Permian Hills. Though its soils and underlying rock strata are similar to that of the Permian Hills, it is dominated by Mixed Mesophytic Forest. The headwaters area of the Little Kanawha in the southeast extends into the Central Appalachians (USEPA ecoregion 69), subregion 69a, Forested Hills and Mountains (Figure 6). Ecoregion 69 is more densely forested, and higher, cooler, and steeper than the Western Allegheny Plateau (Woods et al. 1999).

There are no known coal resources in the western half of the Little Kanawha watershed. The West Virginia Coal Bed Mapping project has completed mapping in Gilmer County and in parts of Braxton and Lewis counties, and the only appreciable mapped coal resources are part of the Redstone and Pittsburgh formations of the Monongahela group (WVGES 2012a). The Little Kanawha is the only one of the five pilot HUC8 watersheds to have very little mining activity, which is confined to the Sand Fork watershed (EPA 2000). There are, however, extensive deposits of oil and natural gas, which were first produced as by products from salt mining and later became the locus of West Virginia's oil and gas industry.

The Marcellus Shale play, a large deposit of black sedimentary rock containing natural gas, underlies nearly the entire watershed at a depth of 4,000-8,500 feet (USACE 2011). The thickness of the Marcellus shale increases from west-east across the watershed, ranging from 20-40 feet in the western portion to 80-100 feet in the extreme eastern end (WVGES 2012b). Production from the Marcellus play has grown rapidly since 2008, due to advancements in hydraulic fracturing technology making extraction more economically feasible. Several thousand feet below the Marcellus, the Utica shale also extends under the entire watershed and most of West Virginia. The potential of this shale play is only beginning to be developed.

Final Report

Figure 5. The Nature Conservancy Ecoregions – West Virginia (TNC 2009)

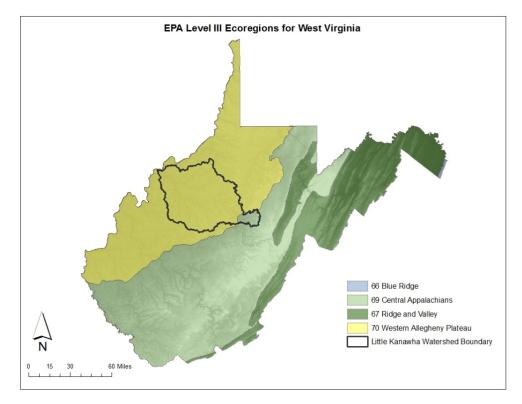


Figure 6. USEPA Level III Ecoregions – West Virginia (USEPA 2011)

2.3.2 Land Use/Land Cover

According to a 2009-2010 land cover analysis (Maxwell et al. 2011, Figure 7), the Little Kanawha River watershed consists predominately of deciduous, evergreen, and mixed forest (Table 2), dominated by dry oak forest (TNC 2011a). Grazing pasture is the predominant anthropogenic land use, followed by urban development and cultivated crops. Unique among the five pilot HUC8 watersheds, the Little Kanawha has very little active mining (surface or underground) or reclaimed mine lands.

2.3.3 Biodiversity

The West Virginia Natural Heritage Program has recorded 56 Species in Greatest Need of Conservation (SGNCs) in the Little Kanawha watershed since 1990 (WVDNR 2005, Table 3). Two are federally endangered species, the mussels snuffbox (*Epioblasma triquetra*) and clubshell (*Pleurobema clava*). Aside from these, the majority are vulnerable to critically imperiled statewide (NatureServe ranks S1-S3, Table 4, NatureServe 2012), but are apparently secure globally (G5). Three species have G3 rank signifying globally vulnerable status: a dragonfly (the green-faced clubtail, *Gomphus viridifrons*), a fish (the Eastern sand darter, *Ammocrypta pellucida*), and a mussel (the long-solid, *Fusconaia subrotunda*). A limitation of this element occurrence dataset is that it is apparently biased toward riparian and wetland areas. In addition, it is not known where points were sampled and no rare species were found. A full listing of rare species and their conservation status is given in Table 3, and an explanation of the rankings is given in Table 4 (NatureServe 2012).

Thirty-nine species of non-native invasive plants have been recorded in the Little Kanawha watershed (Table 5), the five most common being multiflora rose (*Rosa multiflora*), Japanese honeysuckle (*Lonicera japonica*), common teasel (*Dipsacus fullonum*), Japanese stiltgrass (*Microstegium vimineum*), and autumn olive (*Elaegnus umbellata*). The USGS has recorded 12 species of non-indigenous fishes; some, like the common carp (*Cyprinus carpio*) and brown trout (*Salmo trutta*), are exotic, while others are natives, often stocked for sport. Rainbow trout (*Onchorhyncus mykiss*) and brown trout, which are stocked in the Little Kanawha River, have been shown to negatively impact native brook trout and darters in other states, although similar studies have not been carried out in West Virginia (NPS 2011, Wood 2012). The Asian clam (*Corbicula fluminea*) has become established in the Little Kanawha River and several tributaries (USGS 2013), but zebra mussels have not been recorded. The freshwater jellyfish (*Craspedacusta sowerbyi*), which can be transported on the legs of waterfowl or in aquatic plants, and has been found over most of the eastern U.S., also has several records from the watershed (USGS 2013).

WVWAPP Little Kanawha River Watershed Assessment

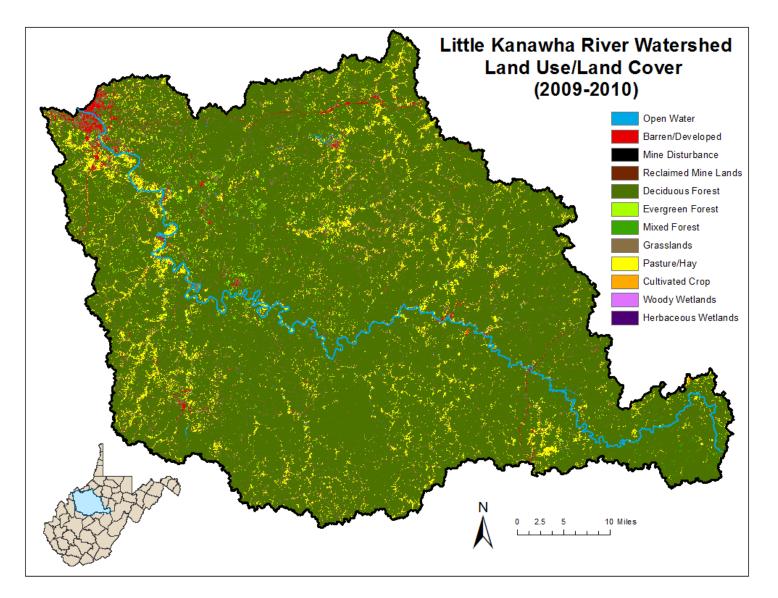


Figure 7. Little Kanawha River Watershed – Land Use/Land Cover 2009-2010 (Maxwell et al. 2011)

Land Cover Type	Square Miles	Percent Area
Forest	1984	86
Grasslands	161	7
Pasture/Hay	132	6
Development	20	1
Open water	9	< 1
Agriculture	1	< 1
Wetlands	<1	< 1
Mine disturbance	< 1	< 1

Table 3. Rare Species in Little Kanawha River Watershed (WVDNR 2005)

Taxon	Scientific Name	Common Name	Global Rank	Sub- National Rank	Federal Rank
Insect	Dromogomphus spoliatus	Flag-tailed spinyleg	G4G5	S2S3	
Insect	Gomphus vastus	Cobra clubtail	G5	S2	
Insect	Gomphus descriptus	Harpoon clubtail	G4	S3	
Insect	Gomphus quadricolor	Rapids clubtail	G3G4	S2S3	
Insect	Gomphus viridifrons	Green-faced clubtail	G3	S2	
Insect	Aeshna tuberculifera	Black-tipped darner	G4	S2	
Insect	Anax longipes	Comet darner	G5	S1	
Insect	Epiaeschna heros	Swamp darner	G5	S3	
Insect	Macromia alleghaniensis	Allegheny river cruiser	G4	S3	
Insect	Cordulia shurtleffii	American Emerald	G5	S4	
Insect	Neurocordulia yamaskanensis	Stygian shadowdragon	G5	S2	
Insect	Somatochlora linearis	Mocha emerald	G5	S1	
Insect	Celithemis fasciata	Banded pennant	G5	S3	
Insect	Sympetrum ambiguum	Blue-faced meadowhawk	G5	S1	
Insect	Sympetrum obtrusum	White-faced meadowhawk	G5	S2	
Insect	Lestes dryas	Emerald spreadwing	G5	S1	
Insect	Enallagma vesperum	Vesper bluet	G5	S1	
Insect	Stylurus spiniceps	Arrow clubtail	G5	S1	
Insect	Cyllopsis gemma	Gemmed satyr	G5	S2S3	
Mussel	Epioblasma triquetra	Snuffbox	G3	S2	LE
Mussel	Fusconaia subrotunda	Long-solid	G3	S2	
Mussel	Pleurobema clava	Clubshell	G2	S1	LE
Mussel	Pleurobema sintoxia	Round pigtoe	G4	S2	
Mussel	Toxolasma parvus	Lilliput	G5	S2	
Crustacean	Cambarus monongalensis	A crayfish	G5	S3	

Taxon	Scientific Name	Common Name	Global Rank	Sub- National Rank	Federal Rank
Amphibian	Ambystoma jeffersonianum	Jefferson salamander	G4	S3	
Amphibian	Cryptobranchus alleganiensis	Eastern hellbender	G3G4	S2	
Amphibian	Aneides aeneus	Green salamander	G3G4	S3	
Amphibian	Pseudotriton montanus	Midland mud	G5T5	S1	
	diastictus	salamander			
Amphibian	Pseudotriton ruber	Northern red salamander	G5	S3	
Reptile	Graptemys geographica	Northern map turtle	G5	S2	
Reptile	Eumeces laticeps	Broad-headed skink	G5	S2	
Reptile	Heterodon platirhinos	Eastern hog-nosed snake	G5	S3	
Fish	Ichthyomyzon bdellium	Ohio lamprey	G3G4	S2	
Fish	Ichthyomyzon greeleyi	Mountain brook lamprey	G3G4	S1	
Fish	Lampetra aepyptera	Least brook lamprey	G5	S2S3	
Fish	Lampetra appendix	American brook lamprey	G4	S2	
Fish	Polyodon spathula	Paddlefish	G4	S1	
Fish	Notropis blennius	River shiner	G5	S2	
Fish	Notropis procne	Swallowtail shiner	G5	S2	
Fish	Phoxinus erythrogaster	Southern redbelly dace	G5	S2S3	
Fish	Pimephales vigilax	Bullhead minnow	G5	S2	
Fish	Luxilus cornutus	Common shiner	G5	S3	
Fish	Lythrurus umbratilis	Redfin shiner	G5	S3	
Fish	Carpiodes velifer	Highfin carpsucker	G4G5	S1	
Fish	Ameiurus melas	Black bullhead	G5	S3S4	
Fish	Ammocrypta pellucida	Eastern sand darter	G3	S2S3	
Fish	Etheostoma camurum	Bluebreast darter	G4	S3	
Fish	Etheostoma tippecanoe	Tippecanoe darter	G3G4	S2	
Fish	Percina copelandi	Channel darter	G4	S2S3	
Fish	Percina phoxocephala	Slenderhead darter	G5	S1	
Fish	Percina sciera	Dusky darter	G5	S3	
Fish	Percina shumardi	River darter	G5	S1	
Bird	Ardea herodias	Great blue heron	G5	S3B,S4N	
Bird	Circus cyaneus	Northern harrier	G5	S1B,S3N	
Bird	Petrochelidon pyrrhonota	Cliff swallow	G5	S3B	

WVWAPP Little Kanawha River Watershed Assessment

Final Report

Table 4. Species Rankings Definitions (NatureServe 2012)

G1	Critically Imperiled—At very high risk of extinction due to extreme rarity (often 5 or fewer populations), very steep declines, or other factors.
G2	Imperiled—At high risk of extinction or elimination due to very restricted range, very few populations, steep declines, or other factors.
G3	Vulnerable—At moderate risk of extinction or elimination due to a restricted range, relatively few populations, recent and widespread declines, or other factors.
G4	Apparently Secure—Uncommon but not rare; some cause for long-term concern due to declines or other factors.
G5	Secure—Common; widespread and abundant.
LE	Listed Endangered (Federal) under the US Endangered Species Act of 1973
LT	Listed Threatened (Federal) under the US Endangered Species Act of 1973
S1	Critically Imperiled—Critically imperiled in the jurisdiction because of extreme rarity or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the jurisdiction.
S2	Imperiled—Imperiled in the jurisdiction because of rarity due to very restricted range, very few populations, steep declines, or other factors making it very vulnerable to extirpation from jurisdiction.
S3	Vulnerable—Vulnerable in the jurisdiction due to a restricted range, relatively few populations, recent and widespread declines, or other factors making it vulnerable to extirpation.
S4	Apparently Secure—Uncommon but not rare; some cause for long-term concern due to declines or other factors.
S5	Secure—Common, widespread, and abundant in the jurisdiction.

Table 5. Invasive Species in Little Kanawha River Watershed (WVDA 2011)

Taxon	Scientific Name	Common Name
Plant	Ailanthus altissima	Tree-of-heaven
Plant	Albizia julibrissin	Mimosa, Silk Tree
Plant	Alliaria petiolata	Garlic mustard
Plant	Arthraxon hispidus	Jointhead arthraxon
Plant	Barbarea vulgaris	Yellow rocket
Plant	Berberis thunbergii	Japanese barberry
Plant	Carduus acanthoides	Plumeless thistle
Plant	Centaurea biebersteinii	Spotted knapweed
Plant	Cirsium arvense	Canada thistle
Plant	Conium maculatum	Poison hemlock
Plant	Cuscuta campestris	Prairie dodder
Plant	Daucus carrota	Queen Anne's lace
Plant	Dipsacus fullonum	Common teasel
Plant	Dipsacus laciniatus	Cutleaf teasel
Plant	Elaeagnus umbellata	Autumn olive
Plant	Glechoma hederacea	Ground Ivy
Plant	Hedera helix	English ivy
Plant	Holcus lanatus	Common velvetgrass

Taxon	Scientific Name	Common Name
Plant	Humulus japonicus	Japanese hop
Plant	Iris pseudacorus	Yellow iris
Plant	Lespedeza cuneata	Sericea
Plant	Creeping Jenny	Lysimachia nummularia
Plant	Lonicera japonica	Japanese honeysuckle
Plant	Lonicera maackii	Amur honeysuckle
Plant	Lonicera morrowii	Morrow's honeysuckle
Plant	Lysimachia nummularia	Moneywort
Plant	Lythrum salicaria	Purple loosestrife
Plant	Microstegium vimineum	Japanese stiltgrass
Plant	Miscanthus sinensis	Chinese silvergrass
Plant	Phalaris arundinacea L.	Reed Canarygrass
Plant	Phragmites australis	Common reed
Plant	Polygonum cuspidatum	Japanese knotweed
Plant	Polygonum perfoliatum	Mile-a-minute weed
Plant	Pueraria montana	Kudzu vine
Plant	Rhamnus cathartica	Common buckthorn
Plant	Rosa multiflora	Multiflora rose
Plant	Rubus phoenicolasius	Wineberry
Plant	Rumex acetosella	Sheep sorrel
Plant	Sorghum halepense	Johnson grass
Coelenterate	Crespedacusta sowerbyi	Freshwater jellyfish
Mollusk	Corbicula fluminea	Asian clam
Fish	Lepomus gibbosus	Pumpkinseed
Fish	Lepomis humilis	Orangespotted sunfish
Fish	Carassius auratus	Goldfish
Fish	Cyprinus carpio	Common carp
Fish	Pimephales promelas	Fathead minnow
Fish	Esox lucius	Northern pike
Fish	Morone chrysops	White bass
Fish	Morone chrysops x M. saxatilis	Wiper
Fish	Sander Canadensis x vitreus	Saugeye
Fish	Onchorhynchus mykiss	Rainbow trout
Fish	Salmo trutta	Brown trutta
Fish	Salmo x Salvelinus trutta x fontinalis	Tiger trout

2.3.4 Streams

In 2010, 728 stream miles in the Little Kanawha watershed, including the main stem of the river, were classified by WVDEP as 303(d) impaired streams. The most common impairment was biological (533 miles), followed by metals (primarily iron, 236 miles) and fecal coliform (144 miles). The sources for fecal and biological impairments are non-point sources such as inadequate sewage treatment and agricultural runoff; sedimentation from wells, timber harvest, agriculture, and roads can also contribute to biological impairments. The same land disturbances can contribute to metals impairment, as can abandoned mine lands (TetraTech 2008). Fourteen stream miles impaired by PCBs are found in the Hughes River HUC12. Thirty-one miles of pH impaired streams are in the Little Kanawha headwaters areas in the Glady Creek and Right Fork Little Kanawha River HUC12s; these streams are in the Forested Hills and Mountains region of the Central Appalachians, and as such are susceptible to acid deposition impacts due the nature of the soils and bedrock (WVDEP 2010). In 2008 TMDLs were generated for six impaired streams in the Little Kanawha Watershed (TetraTech 2008) and the DEP plans to submit TMDLs for 26 streams in the watershed in 2017 or 2022, depending on the stream (WVDEP 2010).

Forty-eight miles of streams in the Glady Creek and Right Fork Little Kanawha River HUC12s in the southeast portion of the watershed are designated as trout streams. Approximately 979 miles of streams in the Little Kanawha watershed have been judged by WVDNR to be high quality with potential for mussels, including 688 with potential for endangered species occurrence.

2.3.5 Vegetation Types

According to the Northeast Terrestrial Habitat Classification System (Gawler 2008), the upland habitat of the Little Kanawha River watershed is dominated by dry-mesic oak forests and mesophytic forest, with smaller pockets of specialized habitats such as oak-pine forest and areas of cliff and talus (Table 6). For the purposes of this analysis, however, we used the more general concept of "forested cover" and combined the three forest landcover classifications (deciduous, evergreen, mixed) defined by the landcover dataset of Maxwell et al. (2011).

Table 6. Northeast Terrestrial Habitat Types – Little Kanawha River Watershed (TNC 2011c)	
---	--

Ecological System Code	Total Acres	Percent area	Habitat Type	Wetland Type
5920	510,298	35	Northeastern interior dry-mesic oak forest:typic	
887	450,812	30	South-central interior mesophytic forest	
359	295,876	20	Allegheny-Cumberland dry oak forest and woodland	
80	108,657	7	NLCD Agricultural classes 81 & 82	
20	87,474	6	NLCD developed classes 21-24 & 31	
3731	9,821	<1	Southern and central Appalachian cove forest	
5271	6,467	<1	NLCD 52/71 Shrubland/grassland	
11	5,193	<1	NLCD-NHD open water	
5930	1,741	<1	Appalachian (Hemlock) northern hardwood forest: typic	
690	578	<1	Central interior calcareous cliff and talus	
601	442	<1	North-central Appalachian acid cliff and talus	
591	315	<1	Central Appalachian dry oak-pine forest	
16049	103	<1	North-central Appalachian acidic swamp	Larger river floodplain
5939	86	<1	Appalachian (Hemlock) northern hardwood forest:moist-cool	
15949	48	<1	Laurentian-Acadian freshwater marsh	Larger river floodplain
15947	36	<1	Laurentian-Acadian freshwater marsh	Smaller river riparian
16059	32	<1	North-central interior and Appalachian rich swamp	Larger river floodplain
16047	31	<1	North-central Appalachian acidic swamp	Smaller river riparian
15827	28	<1	Laurentian-Acadian wet meadow-shrub swamp	Smaller river floodplain
15829	26	<1	Laurentian-Acadian wet meadow-shrub swamp	Larger river floodplain
16057	12	<1	North-central interior and Appalachian rich swamp	Smaller river riparian
5929	8	<1	Laurentian-Acadian wet meadow-shrub swamp	Larger river floodplain
16044	6	<1	North-central Appalachian acidic swamp	Large lake

Section 3: Assessment Methodology

3.1 Assessment Design

3.1.1 Planning Units

The assessment analysis was conducted at two spatial scales, beginning with planning units at the coarser scale of 12-digit USGS Hydrologic Unit Code (HUC) watersheds (referred to as HUC12 watersheds) nested within the HUC8 watershed (Figure 8). A HUC12 is a drainage area delineated by a spatial modeling technique using 24K scale hydrographic and topographic maps and data, to represent a 10,000-40,000 acre area that contributes source water to a single outlet point on a river or stream. It is identified by a 12-digit code indicating its position in the larger landscape, as well as a name corresponding to a significant hydrographic, cultural, or political feature within its boundaries (USGS 2009, NRCS 2012). A HUC12 may be composed of headwater streams, in which case it is self-contained, or it may include streams that originate in an upstream HUC12, in which case its water quality may be influenced by attributes of the upstream watershed. Detailed information about the HUC12 watersheds within the Little Kanawha River basin is presented in Table 7.

A finer level of planning units consisted of NHDPlus catchments within the HUC8 watershed, a scale at which protection or restoration activities are more likely to take place. The NHDPlus catchments are elevation-derived drainage areas of individual stream segments produced by Horizon Systems Corporation, using a drainage enforcement technique that involved "burning-in" the 100K NHD flowlines and, when available, building "walls" using the national Watershed Boundary Dataset, primarily to achieve a compatible and hydrologically accurate catchment for each stream segment (USEPA and USGS 2005). Some NHDPlus catchments were modified to provide a more uniform planning unit size, by dividing very large catchments into smaller units or merging very small catchments with the larger adjacent catchment.

3.1.2 Landscape Classification

Watersheds were divided into three separate landscapes that were analyzed independently of each other, and for which separate sets of results at both levels of planning units (HUC12 watersheds and NHDPlus catchments) were calculated:

3.1.2.1 Streams/Riparian Areas

Streams considered in the assessment were defined using the USGS National Hydrography Dataset 24K (NHD24K) flowlines, plus an approximately 90-125 meter riparian buffer. The NHD24K dataset is known to be missing some headwater stream reaches, particularly intermittent streams, but several constraining factors, such as compatibility between datasets and amount of manual processing time required to generate auxiliary data for certain metrics, resulted in the NHD24K being the most detailed and reliable source of stream line data for the purposes of this project.

The Little Kanawha watershed has 5,388 miles of NHD24K streams, of which approximately 3,985 miles are headwaters streams. A riparian buffer was delineated using the northeast regional Active River Area (ARA) dataset generated by TNC's Eastern Regional Office (Smith et al. 2008). The ARA

WVWAPP Little Kanawha River Watershed Assessment

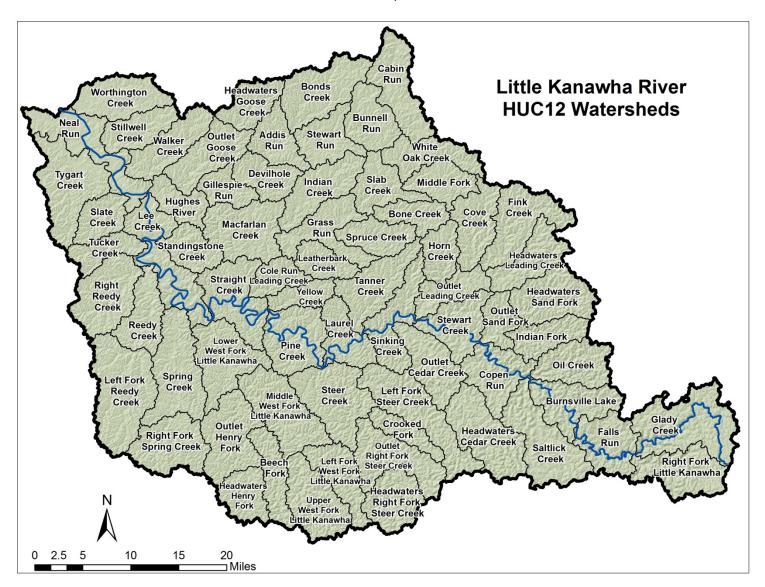


Figure 8. Little Kanawha River HUC12 Watersheds (NRCS 2009)

Final Report
Table 7. HUC12 Watershed Information (NRCS 2009, USGS 2011)

HUC12	HUC12 Name	Acres	Square Miles	Stream Miles (24K)	Stream Miles (100k)
050302030101	Headwaters Sand Fork	24,950	39	90	58
050302030102	Indian Fork	15,202	24	53	37
050302030103	Outlet Sand Fork	11,152	17	42	28
050302030201	Fink Creek	27,193	42	99	63
050302030202	Headwaters Leading Creek	19,049	30	69	39
050302030203	Cove Creek	20,449	32	74	46
050302030204	Horn Creek	12,806	20	48	30
050302030205	Outlet Leading Creek	13,742	21	55	36
050302030301	Right Fork Little Kanawha River	24,095	38	93	62
050302030302	Glady Creek-Little Kanawha River	38,861	61	138	93
050302030303	Falls Run-Little Kanawha River	21,082	33	74	51
050302030304	Saltlick Creek	31,461	49	103	62
050302030305	Burnsville Lake-Little Kanawha River	22,735	36	70	54
050302030306	Oil Creek	20,163	32	64	43
050302030307	Copen Run-Little Kanawha River	21,451	34	65	45
050302030308	Stewart Creek-Little Kanawha River	19,994	31	71	49
050302030401	Headwaters Cedar Creek	30,405	48	102	69
050302030402	Outlet Cedar Creek	21,451	34	78	50
050302030501	Headwaters Right Fork Steer Creek	19,607	31	73	44
050302030502	Crooked Fork	10,288	16	34	24
050302030503	Outlet Right Fork Steer Creek	25,687	40	87	53
050302030504	Left Fork Steer Creek	32,120	50	108	73
050302030505	Steer Creek	30,290	47	119	77
050302030601	Left Fork West Fork Little Kanawha River	18,415	29	68	43
050302030602	Upper West Fork Little Kanawha River	24,999	39	83	55
050302030603	Headwaters Henry Fork	15,054	24	53	36
050302030604	Beech Fork	15,823	25	61	36
050302030605	Outlet Henry Fork	27,329	43	95	64
050302030606	Middle West Fork Little Kanawha River	29,403	46	119	80
050302030607	Lower West Fork Little Kanawha River	26,557	41	94	67
050302030701	Right Fork Spring Creek	25,209	39	74	51
050302030702	Spring Creek	32,137	50	104	76
050302030801	Left Fork Reedy Creek	39,553	62	139	88
050302030802	Right Reedy Creek	27,308	43	89	67
050302030803	Reedy Creek	18,349	29	56	46
050302030901	Cabin Run-North Fork Hughes River	25,269	39	98	48

HUC12	HUC12 Name	Acres	Square Miles	Stream Miles (24K)	Stream Miles (100k)
050302030902	Bunnell Run-North Fork Hughes River	18,461	29	79	41
050302030903	Bonds Creek	27,878	44	131	80
050302030904	Stewart Run-North Fork Hughes River	17,016	27	74	46
050302030905	Addis Run-North Fork Hughes River	15,133	24	59	39
050302030906	Devilhole Creek-North Fork Hughes River	14,927	23	61	39
050302030907	Gillespie Run-North Fork Hughes River	10,770	17	36	22
050302031001	Middle Fork	14,876	23	60	37
050302031002	White Oak Creek-South Fork Hughes	18,081	28	70	40
050302031003	Bone Creek	12,242	19	47	23
050302031004	Slab Creek-South Fork Hughes River	16,534	26	74	42
050302031005	Spruce Creek	15,166	24	63	38
050302031006	Leatherbark Creek	11,523	18	49	25
050302031007	Indian Creek	21,861	34	101	60
050302031008	Grass Run-South Fork Hughes River	21,797	34	94	58
050302031009	Macfarlan Creek-South Fork Hughes River	27,893	44	107	71
050302031101	Headwaters Goose Creek	14,808	23	73	33
050302031102	Outlet Goose Creek	21,464	34	65	45
050302031103	Hughes River	12,382	19	36	30
050302031201	Tanner Creek	23,430	37	97	55
050302031202	Sinking Creek-Little Kanawha River	22,035	34	83	55
050302031203	Laurel Creek-Little Kanawha River	17,037	27	74	41
050302031204	Yellow Creek	9,848	15	42	28
050302031205	Pine Creek-Little Kanawha River	25,234	39	108	67
050302031206	Cole Run-Leading Creek	10,943	17	46	31
050302031207	Straight Creek-Little Kanawha River	27,302	43	103	72
050302031208	Tucker Creek	12,018	19	44	31
050302031209	Standingstone Creek	13,471	21	35	27
050302031210	Lee Creek-Little Kanawha River	30,511	48	81	68
050302031301	Slate Creek	13,416	21	50	33
050302031302	Walker Creek	20,148	31	53	40
050302031303	Stillwell Creek	15,565	24	46	35
050302031304	Tygart Creek	32,713	51	153	81
050302031305	Worthington Creek	22,430	35	62	32
050302031306	Neal Run-Little Kanawha River	28,365	44	90	61

is based on the concept that river health depends on a dynamic interaction between the water and the land through which it flows, thus incorporating both aquatic and riparian habitats. The ARA explicitly considers processes such as system hydrologic connectivity, floodplain hydrology, and sediment movement along the river corridor and delineates areas along a stream where such processes are likely to occur (Smith et al 2008). However, the ARA for this region was generated based on the NHD 100K flowlines dataset, a coarser-level dataset than the NHD24K dataset. Since a primary goal of the project was to analyze headwater streams within each HUC8, the greater detail of the NHD24K dataset was needed. Therefore, a 120-meter buffer was generated for any headwater streams that occurred within the 24K dataset, but were not covered within the Active River Area.

3.1.2.2 Wetlands

Wetlands considered in this assessment were defined using the US Fish and Wildlife Service's NWI dataset. The West Virginia NWI contains data collected over a large time period, from February 1971 to December 1992, and the statewide coverage was published in 1996. Therefore, the quality and accuracy of the wetland locations within the watershed are questionable, as the dataset is both old and largely based on interpretation of aerial photography and a variety of field survey techniques. The general NWI palustrine wetland types are listed in Table 8. To include the immediately surrounding wetland habitat into the analysis, a 50-meter wetland buffer was generated. A width of 50 meters was chosen based on a literature review and discussions with experts during workshops. Additionally, some metrics were calculated based on the catchment area for each wetland. These catchments were delineated by NHDPlus catchments, using flow direction grids to determine which NHDPlus catchment layer that approximated the total drainage area for all mapped wetlands within a watershed.

NWI Code Prefix	NWI Wetland Type	Total Acres
PEM	Palustrine Emergent Wetland	128
PFO	Palustrine Forested Wetland	239
PSS	Palustrine Shrub-Scrub Wetland	71

Table 8. NWI Wetland Types - Little Kanawha River Waters	shed (USFWS 2010)
--	-------------------

3.1.2.3 Uplands

The purpose of including uplands as a separate landscape was two-fold: to characterize areas that are important for terrestrial species, and to quantify the potential impacts of upland habitat disturbance on water quality. We defined uplands as any areas not included in the riparian or wetland buffers; however, the material contribution zone of the Active River Area extended into the uplands. For the majority of metrics, we used the spatial datasets for the entire watershed instead of limiting the analysis to the riparian or wetland buffer as with the analysis of the previous two landscapes.

3.2 Priority Models

Three Priority Models were defined based on the three landscapes defined in the assessment:

- Streams/Riparian Areas
- Wetlands
- Uplands

Priority models were further divided into several indices to assess both the condition and function of the watershed (Table 9). Each index was defined by numerous metrics, derived from various datasets that were processed and analyzed for each planning unit (HUC12 and NHDPlus catchment). Condition and function include both *quality indicators* of the inherent physical features of the landscape (e.g., total miles of headwater streams), as well as any *stressors*, or anthropogenic/natural factors that may have a negative impact on the landscape (e.g., active surface mining). In many instances, a direct measurement or data source for a particular metric was unavailable or unreliable. In such cases, surrogate data were identified and used to estimate quality or stress (e.g., dam drainage area used to approximate the impacts of flow alteration from impoundments).

The objective was to identify and utilize datasets that characterize the following aspects of the watershed:

- a. Riparian, wetland, and upland natural resources in the watershed
- Functional values and ecological services provided by the natural resources in the watershed (surface water use, flood storage/abatement, groundwater use, sediment retention, pollutant assimilation, recreational benefits, etc.)
- c. Freshwater connectivity within the watershed, and hydrologic connections upstream and downstream of the watershed (where appropriate), to determine how these affect watershed condition
- d. Water quality impairments (including 303(d) stream listings, acid mine drainage (AMD)

Priority Model	Index
	Water Quality
	Water Quantity
Streams	Hydrologic Connectivity
	Biodiversity
	Riparian Habitat
	Water Quality
Wetlands	Hydrology
wettands	Biodiversity
	Wetland Habitat
	Habitat Connectivity
Uplands	Habitat Quality
	Biodiversity

 Table 9. Watershed Characterization Priority Models and Indices

impaired, and TMDL streams) within the watershed, and issues affecting hydrology and environmental flows

- e. The contribution of consumptive water use on aquatic resource quantity and function
- f. Rare, unique and/or sensitive species (and their habitat requirements) and vegetative communities within the watershed
- g. Existing conservation investments on the ground (local, state, federal, and private conservation lands; conservation easements; mitigation sites)
- h. Identified government and private conservation priorities within the watershed (protection and/or restoration priorities identified by conservation organizations and government agencies)
- i. Natural physical vulnerability of the watershed as indicated by factors such as slope, highly erodible soils, etc.
- j. Land use practices in the watershed with the potential to negatively impact natural resource value and function (resource extraction activities such as mining, oil and gas well drilling, mineral operations; development, road construction, etc.)
- k. Land use practices in the watershed with the potential to cause pollution of aquatic resources (point sources such as facilities that discharge to water, non-point sources such as impervious cover runoff, agriculture, landfills, etc.)
- I. Sources of natural resource and/or function loss due to fragmentation (dams, transportation infrastructure, energy transmission, etc.)

3.2.1 Streams/Riparian Areas Model

The *Streams Water Quality* (SWQ) index attempted to evaluate the overall water quality of all streams within the watershed. Metrics for impaired streams included those that have been 303(d) listed, covered by a Total Maximum Daily Load (TMDL) requirement, or are known to be impacted by acid mine drainage (AMD). Many streams were monitored and sampled by the WVDEP Watershed Assessment Branch (WAB) for a variety of standard water quality parameters (e.g., pH, sulfates, heavy metals, specific conductivity), as well as biological and habitat indices, such as GLIMPSS (Genus Level Index of Most Probable Stream Status, a measure of macroinvertebrates) and RBP (Rapid Bioassessment Protocol, a measure of habitat quality) scores. However, as other factors may affect the water quality in a stream, and many stream segments lack a WAB sampling station, several surrogate metrics were added to this index. These included percent imperviousness and various anthropogenic land uses and potential stressors (e.g., surface and underground mining, roads and railroads, well locations, etc.).

The Streams Water Quantity (SWN) index attempted to evaluate the overall degree of flow alteration within a given planning unit. However, very little data were available as direct measurements of stream flow or of stream withdrawals or discharges, with the few known points of such activities (such as public water supply intakes or sewer treatment plants) having incomplete or possibly inaccurate attribute data regarding water volume. The USGS stream-gauging network, a principal source of streamflow data in West Virginia, is concentrated on large streams. Since flow characteristics of large and small streams are different, flow data from the main stem of the Little Kanawha River could not be used to distinguish among the various HUC12s in the watershed (Messinger 2012). Therefore, surrogate metrics were developed to approximate the impact of water use within a planning unit and its potential

alteration of flow, such as area of mining activities (surface and underground), percent of impervious surface, and dam drainage area (the total catchment area above a dam).

The *Streams Hydrologic Connectivity* (SHC) index attempted to evaluate the aquatic connectivity of the watershed in terms of network complexity and overall system integrity, with accompanying metrics such as miles of headwater streams, the mean local integrity of the planning unit, and total wetland area. The SHC index also addressed the more functional elements of hydrologic connectivity, focusing primarily on unimpeded flow and the ability of a stream segment to allow passage for aquatic species. Metrics generated for this purpose included the number of any potential structural impediments such as dams, roads/railroads in the riparian area (a surrogate for culverts and bridges), and conditions that may cause temperature changes that would affect passage of organisms (such as power plants whose discharges may raise overall stream temperatures or forested riparian area where the canopy may help maintain cooler temperatures).

The *Streams Biodiversity* (SBD) index attempted to capture the species diversity within the stream and riparian area, including metrics for the presence of rare or endangered species, the maximum number of invertebrate taxa found in stream samples, and known locations of non-native invasive species. Since species data for West Virginia do not distinguish between areas sampled with no species found and areas not sampled, additional metrics were included as an estimate of potential species presence (such as calcareous bedrock and number of terrestrial habitat types in the riparian area). Because of the lack of robust biodiversity data, this index received a weight of half compared to the other indices, and results should be used with caution.

The Streams Riparian Habitat (SRH) index attempted to characterize the habitat within the approximately 90-125 meter riparian buffer (the Active River Area), assuming that intact natural cover within this buffer will be most effective at stabilizing stream banks, moderating stream temperature, and providing habitat (such as native aquatic vegetation, rocks, and logs) for aquatic species. Corresponding metrics included various land uses and land cover within the riparian buffer (natural cover, mining, agriculture, grazing), percent impervious cover within the riparian area, RBP scores, and fragmenting features such as roads and wells.

3.2.2 Wetlands Model

The Wetlands Water Quality (WWQ) index attempted to identify the current water quality condition of existing wetlands, as well as approximate the functional value of each wetland in terms of pollutant filtration and sediment retention, two major functions related to wetland water quality. Thus, wetlands were evaluated based on their inherent ability to serve a designated function, as well as their potential for serving such function based on surrounding land uses and potential pollutants. WWQ metrics included type of wetland (e.g., forested headwater wetland) and stressors located within the wetland catchment (i.e., the drainage area of the wetland; with metrics including the amount of agriculture, grazing, or development; percent imperviousness; active surface mining; and wells). Since the WWQ metrics are dependent on the existence of a wetland, those planning units without an existing NWI wetland were excluded from this index.

The *Wetlands Hydrology* (WHY) index attempted to quantify the wetland extent within an area as well as assess the functional aspect of potential flood storage. Wetland extent was represented by

total wetland area, while potential flood storage capacity metrics included the area of forested floodplain wetlands, total floodplain area, and hydric soils. These metrics also identified areas in the watershed with a greater potential for wetlands to develop under wet conditions, and which may have been areas of wetland loss in the past. It is due to these "potential wetlands" metrics (hydric soils and floodplain area) that the WHY index was calculated for all planning units (at both the HUC12 and NHDPlus catchment level), and not just those containing existing NWI wetlands. Any planning units with the potential wetlands metrics but no mapped NWI wetlands may be considered potential sites for wetland restoration.

The Wetlands Biodiversity (WBD) index attempted to capture the species diversity within the wetland buffer area, including metrics for the presence of rare or endangered species and known locations of non-native invasive species. Since species data for West Virginia do not distinguish between areas sampled with no species found and areas not sampled, additional metrics were included as an estimate of potential species presence (such as calcareous bedrock and number of terrestrial habitat types within the wetland buffer). Because of the lack of robust biodiversity data, this index received a weight of half compared to the other indices, and results should be used with caution.

The Wetlands Wetland Habitat (WWH) index attempted to quantify the habitat condition within the wetland buffer area. Habitat quality metrics included percent of natural cover and the mean size of unfragmented forest patches that intersected a given wetland buffer (connection with a larger forest patch is likely to create more desirable habitat within a wetland area). Habitat stressors included metrics that may indicate the amount of fragmentation within the wetland buffer, such as surface mining, wells, and road/railroad density.

3.2.3 Uplands Model

The Uplands Habitat Connectivity (UHC) index attempted to assess the ability of terrestrial organisms to reside and move within the landscape. It is generally agreed that blocks or corridors of native vegetation are most conducive to hosting native animal species. In West Virginia the natural cover is primarily forest. The amount of habitat required varies by taxon and species, but large forest blocks and blocks that are connected provide the optimal habitat for a variety of species to disperse, establish breeding territories, and migrate (Anderson et al. 2004). Habitat connectivity is positively affected by forest block size and local integrity, a metric developed by Compton et al. (2007) that quantifies the structural connections between ecosystems in a landscape. Fragmenting features (e.g., roads, energy transmission lines, and resource extraction) negatively affect habitat connectivity.

The Uplands Habitat Quality (UHQ) index attempted to quantify the degree to which a landscape has been altered from its original condition. Metrics included heterogeneity (a measure of landform variety) and the percent of the planning unit in natural cover (forest, grassland, wetlands). Conversion of forest to agriculture or pastureland is an example of degraded habitat quality. Some metrics that impact habitat connectivity also impact habitat quality, such as development and resource extraction.

The Uplands Biodiversity (UBD) index attempted to capture the species diversity within the uplands area, including metrics for the presence of rare or endangered species and known locations of non-native invasive species. Since species data for West Virginia do not distinguish between areas

sampled with no species found and areas not sampled, additional metrics were included as an estimate of potential species presence (such as calcareous bedrock and number of terrestrial habitat types). Additional datasets were available from the US Forest Service (USFS) that provided information about predicted tree basal area loss to pests and pathogens within upland forests. Because of the lack of robust biodiversity data, this index received a weight of half compared to the other indices, and results should be used with caution.

3.3 Ranking Procedure

3.3.1 Objective Classification

The goal of the project was to prioritize the planning units for protection and restoration opportunities. To achieve this, it was necessary to develop a method of ranking planning units based on their current ecological condition and inherent overall quality. Therefore, individual metrics were evaluated using thresholds that assigned metric results to one of four quality categories, indicating the degree of deviation from a desirable ecological condition: Very Good, Good, Fair, and Poor (Table 10). These objective, or "categorized," rankings were determined at both the HUC12 and NHDPlus catchment scales of planning units.

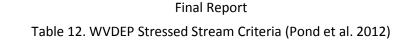
The Good/Fair threshold is also referred to as the "restoration threshold," with any planning units in the Fair category requiring restoration to bring the planning unit into an acceptable ecological condition. Planning units in the Good category may require some restoration to increase the quality to ideal conditions and move the score into the Very Good category, and any planning units in the Very Good category should be considered as potential candidates for protection activities. Planning units in the Poor category may also be potential candidates for restoration, depending on the goals of the individual organization or restoration project.

Thresholds were used to define quantitatively, for each metric, the divisions among the four quality categories. Initially, research focused on identifying sources for threshold values from literature and previous studies (e.g., the percentage of surface mining that places the corresponding metric into a Poor category, or a specific conductivity level that places the metric into a Fair category). However, beyond a few land use classifications and impervious cover percentages, very few thresholds have been established in the scientific literature for landscapes comparable to those in West Virginia. Additional threshold values were solicited from experts, but there was still a notable lack of reliable, defensible

Category	Definition
Very Good	Planning unit is in ecologically desirable status; requires little intervention or
	maintenance.
Good	Planning unit is within acceptable range of variation; some intervention is required for maintenance.
	Planning unit is outside of an acceptable range of variation; requires human
Fair	intervention.
Poor	Restoration of the planning unit is increasingly difficult; may result in extirpation of
1001	target.

Table10. Definition of Objective Method Categories (Foundations of Success 2009)

threshold values for most metrics. Therefore, an alternative approach was developed using WVDEP's reference and stressed streams to define the thresholds. The WVDEP has defined three levels (I, II, III) of reference (i.e., high quality) streams, which categorize a stream based on both water quality sampling data and field survey/visual inspections, such as Rapid Bioassessment Protocol (RBP) scores (Table 11). Level I reference streams are the highest quality, while Level II indicates slightly lower quality streams that still meet most criteria for reference stream designation, and Level III are considered the best representatives in geographic areas lacking true reference streams (WVDEP 2013). To ensure that only the highest quality streams were included in the analysis, the project used only Level I and II reference streams to determine threshold values.


The WVDEP has also identified criteria for water quality sampling and field survey data that indicate whether or not a particular stream reach is significantly impaired (Table 12). While the WVDEP defines stressed sites as meeting at least one of these criteria, this project used at least two criteria to minimize the potential for false positives.

To establish thresholds, the contributing NHDPlus catchments for both reference and stressed streams were identified, resulting in 501 reference catchments and 583 stressed catchments statewide, with a relatively broad and inclusive geographic distribution (Figure 9). Applicable metrics were calculated for the 1,084 reference/stressed catchments for all three landscapes (Streams/Riparian, Wetlands, Uplands) and threshold values were derived from these calculated results.

Parameter	Value
Dissolved Oxygen	≥ 6.0 mg/l
рН	≥ 6.0 and ≤ 9.0
Conductivity	<500 μmhos/cm
Fecal coliform	<800 colonies/100 ml
RBP Epifaunal Substrate score	≥11
RBP Channel Alteration score	≥11
RBP Sediment Deposition score	≥11
RBP Bank Disruptive score	≥11
RBP Riparian Vegetation Zone Width score	≥6
RBP Total Habitat score	65% of maximum 200
No obvious sources of non-point source pollution	
Evaluation of anthropogenic activities and disturb	pances
No known point discharges upstream of assessme	ent site

Table 11. WVDEP Reference Stream Criteria (Pond et al. 2012)

Table 12. WVDEP Stressed	Stream Criteria (Pond et al. 2012)
Parameter	Value
Dissolved Oxygen	<4.0 mg/l
рН	< 4.0 or > 9.0
Conductivity	>1,000 µmhos/cm
Fecal coliform	>4,000 colonies/100 ml
RBP Epifaunal Substrate score	<7
RBP Channel Alteration score	<7
RBP Sediment Deposition score	<7
RBP Bank Disruptive score	<7
RBP Riparian Vegetation Zone Width score	<4
RBP Total Habitat score	<120

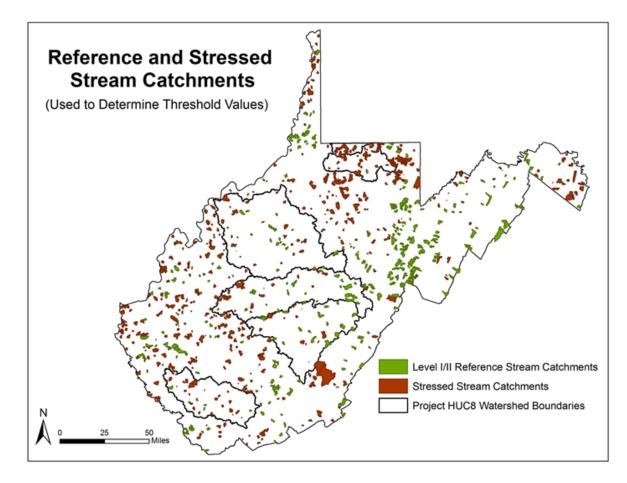
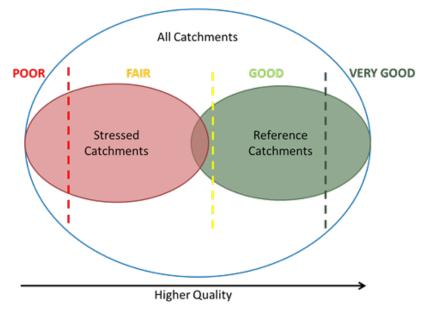



Figure 9. Reference and Stressed Stream Catchments

3.3.2 Objective Thresholds

To determine threshold values for each category, the distributions of the reference and stressed metric values were examined individually, and final analysis results were evaluated through an iterative process, using different percentiles as potential threshold values for all metrics. Different scenarios were

run using different percentiles of the individual metrics as thresholds for all five pilot watersheds. Results were examined for consistency and validated by comparing the results of the various scenarios with known high-quality and impacted areas and by presenting the results to experts familiar with the condition of these areas at the expert workshops. For example, planning units in wilderness areas were expected to be in the Very Good category across most indices for all three models (Streams/Riparian Areas, Wetlands, and Uplands). Similarly, planning units with significant mining or development were expected to score predominantly in the Poor to Fair categories across most indices. It was determined during the expert workshops and project team discussions that the most consistent and reliable results were achieved when using the following percentiles: the Very Good/Good threshold was set as the 35% highest quality of reference catchment values, the Good/Fair threshold was set as the 75% highest quality of reference catchment values, and the Fair/Poor threshold was set as the 35% lowest quality of stressed catchment values (Figure 10). This methodology did not work well for some metrics with extremely skewed distributions, for example where both the 35th percentile and the median and 75th percentile were zero. Table 13 lists the percentiles for three different types of metrics: roads and railroads in the riparian area (a negative metric, with higher values indicating lower quality); percent forested riparian area (a positive metric, with higher values indicating higher quality); and percent surface mining (a metric for which this method of threshold selection did not work) in 5% increments for both stressed and reference catchments. Metrics for which the reference/stressed threshold determination were not suitable were either set as presence/absence metrics, resulting in a Good score if the metric was present for positive metrics or absent for negative metrics, or a Fair score if the metric was absent for positive metrics or present for negative metrics. A small subset of metrics (e.g., impervious cover and percent mining) had reliable threshold values in the literature, in which cases the values from the literature were used after consultation with and validation from experts at expert workshops. As water quality parameters were used by the WVDEP to define reference and stressed catchments, thresholds for water quality parameters were defined using the WVDEP's water quality standards.

Figure 10. Threshold Definition Model

	Refer	ence Catchmen	ts	Stres	sed Catchmen	its
Percentile ^a	Negative Metric: Roads and Railroads in the Riparian Area (mi roads/sq mi planning unit)	Positive Metric: Percent Forested Riparian Area	Alternate Method ^b : Percent of Planning Unit with Surface Mines	Negative Metric: Roads and Railroads in the Riparian Area (mi roads/sq mi planning unit)	Positive Metric: Percent Forested Riparian Area	Alternate Method: Percent of Planning Unit with Surface Mines
Min/Max	0.00	102.7 ^c	0.00	0.0	99.8	0.00
5th/95th	0.00	100.6	0.00	0.20	94.7	0.00
10th/90th	0.00	100.2	0.00	1.22	91.5	0.00
15th/85th	0.00	100.0	0.00	1.98	87.8	0.00
20th/80th	0.00	99.7	0.00	2.46	84.5	0.00
25th/75th	0.00	99.5	0.00	2.86	82.2	0.00
30th/70th	0.00	99.2	0.00	3.25	80.7	0.00
35th/65th	0.00	98.7 ^d	0.00	3.62	78.0	0.00
40th/60th	0.00	98.5	0.00	3.93	75.2	0.00
45th/55th	0.13	98.0	0.00	4.29	63.8	0.00
Median	0.29	97.6	0.00	4.63	67.1	0.00
55th/45th	0.51	96.7	0.00	5.10	63.8	0.00
60th/40th	0.87	95.8	0.00	5.47	61.0	0.00
65th/35th	1.14	94.5	0.00	5.97	57.0 ^f	0.24
70th/30th	1.69	93.2	0.00	6.34	53.4	0.80
75th/25th	2.46	91.6 ^e	0.00	7.02	49.9	1.51
80th/20th	3.10	90.1	0.00	7.93	44.9	2.99
85th/15th	3.72	88.0	0.00	9.07	40.3	5.47
90th/10th	4.57	83.5	0.00	10.97	33.3	9.78
95th/5th	5.83	75.9	0.06	14.43	20.6	20.11
96th/4th	6.26	74.6	0.21	15.94	17.0	24.84
97th/3rd	6.49	72.3	0.54	16.87	14.5	27.72
98th/2nd	6.81	69.8	1.59	18.29	10.7	38.96
99th/1st	9.74	59.1	7.68	23.93	6.4	51.02
Max/Min	34.6	1.28	29.28	35.27	2.9	84.93

^a Negative metrics used the first percentile (i.e., Minimum value if row is "Min/Max"), positive metrics used the second percentile (i.e., Maximum value if row is "Min/Max)

^bAlternate method used for threshold selection

^c Values are higher than 100% because of differences in the spatial properties of the geographic information system (GIS) datasets between the landcover dataset used for this metric and the planning units

^d Selected as percentile for Very Good/Good threshold

^e Selected as percentile for Good/Fair threshold

^fSelected as percentile for Fair/Poor threshold

3.3.3 Critical Metrics

Discussions held during expert workshops suggested that some metrics, subsequently referred to as "critical metrics," indicated an impairment or land use alteration of enough significance that these metrics should limit the final index category value, regardless of other metric values in that index. For instance, if a planning unit had a high enough percentage of impervious cover that placed the metric into the Fair category, the final index score for that planning unit could not be higher than Fair, regardless if other metrics ranked Good or Very Good. Since the Water Quality index in the Streams model had more critical metrics than the other indices, two of the critical metrics had to be Fair or Poor to cap the index at that category. Only a handful of metrics were considered critical (Table 14).

Model	Index	Critical Metrics				
		Percent imperviousness				
	Mator Quality	Surface mining (active & legacy)				
	Water Quality	Median pH values				
		Median specific conductivity values				
Streams Water Quantity		Percent imperviousness				
	Hydrologic Connectivity	None				
	Biodiversity	None				
	Dinarian Habitat	Percent imperviousness in riparian area				
	Riparian Habitat	Active surface mining in riparian area				
	Water Quality	None				
	Hydrology	None				
Wetlands	Biodiversity	None				
	Wetland Habitat	Development in wetland buffer				
		Active surface mining in wetland buffer				
	Habitat Connectivity	Development				
	Habitat Connectivity	Active surface mining				
Uplands	Habitat Quality	Development				
	Habitat Quality	Active surface mining				
	Biodiversity	None				

Table 14. Critical Metrics for Priority Model Analysis

3.3.4 Metrics Final Selection

Initially, the project team identified 214 metrics to characterize the three landscapes (listed in Appendix B: Metrics Description and GIS Process). The values for these metrics at the HUC12 level for all five HUC8 watersheds were subjected to a Pearson's Correlation analysis separately for each model, and if two metrics were highly correlated (R > 0.90), one of the metrics was eliminated. For metric pairs with correlation coefficients between 0.75-0.90, one of the metrics was eliminated if they were judged to be truly redundant. The full set of HUC12 metric values for the Streams priority model (which had the greatest number of metrics) was subjected to a Principal Components Analysis (PCA) to identify the most important metrics to retain in the assessment, i.e., those metrics that accounted for the greatest variation among the HUC12s. Three principal components together accounted for 45% of the variation among HUC12s (Table 15). The most influential component (eigenvalue 18.29, 25% of variation explained) described a gradient of anthropogenic disturbance, from high negative loadings on metrics such as forested riparian area and natural cover in headwater catchments, to high positive loadings on development metrics such as roads/railroads in riparian area. The second component (eigenvalue 9.34, 13% of variation explained) consisted of different mining and coal metrics, while the 3rd component consisted of oil and gas wells (eigenvalue 5.18, 7% of variation explained). Some of the metrics that were identified as important in the PCA were dropped from the assessment due to high correlation with other metrics, lack of data across watersheds, or other reasons. After the correlation and Principal Components Analyses, and discussions with experts at the expert workshops, the final current condition analysis dataset was reduced to 94 metrics.

Table 16 lists all metrics that were used in the final analysis with details on grouping of metrics into individual indices, thresholds, method of determining the thresholds, weight of the metrics in the final analysis, critical metrics, and if a metric was considered a positive or negative metric in the final analysis.

3.3.5 Metric Weights

Metrics were weighted to ensure that each metric contributed a value in its corresponding index relative to its significance in terms of affecting watershed condition. The weights were assigned to each metric based on literature where available, but more often on a synthesis of current knowledge provided by experts from TNC, state and federal agencies, universities, non-profit organizations, and local experts. Recommendations were provided and subsequently refined at several expert workshops and/or by follow-up correspondence with experts. Metric and index weights ranged from 0 to 3, with a weight of 0 assigned to those metrics initially considered but later removed from the analysis (see Appendix B for a full list of metrics originally considered in the analysis). Metrics with weights greater than 0 and considered in the final analysis are listed in Table 16.

Table 15. Principal Components Analysis of Streams Condition Metrics

Metric	Factor Loading*
Component 1	
Forested riparian area	-0.8252
Natural cover in headwater catchments	-0.6871
Median GLIMPSS scores	-0.6836
Local integrity in headwater catchments	-0.6786
Median taxa richness	-0.6210
Large quantity users	0.5107
Wastewater treatment plants	0.5166
Biologically impaired streams	0.5272
Septic systems in riparian area	0.5464
Power plants	0.5780
Energy transmission lines in riparian area	0.6117
Bridges	0.6600
Septic systems	0.6730
Roads and railroad density in riparian area	0.7385
Percent imperviousness	0.7659
Buildings in riparian area	0.7799
NPDES permits	0.7866
Development in riparian area	0.8049
Road and railroad density	0.8056
Component 2	
Total coal production	0.6804
Legacy surface mining in riparian area	0.7279
Active surface mining in riparian area	0.7395
Active surface mining	0.7514
Legacy surface mining	0.7641
Coal NPDES permits	0.7889
Component 3	
Oil and gas wells in riparian area	-0.6943

*Only factors with loadings > |0.5| and loading on only one component are presented here.

Final Report

Table 16. Metrics Included in the Current Condition Analysis

Model	Index	Metric Description (* "Critical Metric")	Weight	Units	Positive/ Negative Metric ^a	Threshold Method	Threshold: Very Good – Good	Threshold: Good – Fair	Threshold: Fair – Poor
		AMD, TMDL, 303(d) impaired streams	2	% of total stream miles in planning unit	N	Reference/stressed	0	11.32	78.09
Model		Median pH values* ^c	2	Index ^b	Р	Literature	350 ^b	250	150
		Median sulfate values ^d	1	Index	Р	Literature	350	250	150
		Median specific conductivity values ^{*^e}	1.5	Index	Р	Literature	350	250	150
		Median GLIMPSS scores ^f	2	Index	Р	Literature	350	250	150
		Median sedimentation & embeddedness ^g	1	Index	Р	Literature	350	250	150
		Percent imperviousness*	2	mean % imperviousness per planning unit	N	Literature	0	2	8
	Water Quality	All wells	1.5	#/sq mi planning unit	N	Reference/stressed	0	2.28	5.47
	(Weight: 1)	Surface mining (active & legacy)*	2	% of planning unit	Ν	Literature/Expert opinion	2	10	20
		Underground mining	2	% of planning unit	Ν	Reference/ stressed	0	3.82	18.30
STREAMS		Agriculture in riparian area	1	% of riparian area	Ν	Reference/ stressed	0	0.07	0.12
		Grazing/pasture in riparian area	1	% of planning unit	N	Reference/ stressed	0	1.67	10.31
		Development in riparian area	1	% of planning unit	N	Reference/ stressed	0	0.02	2.44
		Natural cover in riparian area	2	% of planning unit	Р	Reference/ stressed	99.88	97.01	75.48
		All roads & rail	1.5	miles/sq mi planning unit	N	Reference/ stressed	0.13	1.66	2.79
		Public water supply intakes	0.5	#/stream mi	N	Presence/ absence	-	0	-
		Large quantity users	2	#/stream mi	Ν	Presence/ absence	-	0	-
	Water Quantity	Wastewater treatment plants	0.5	# customers served/sq mi planning unit	N	Presence/ absence	-	0	-
	(Weight: 1)	Dam drainage area	1	% of planning unit	Ν	Presence/absence	-	0	-
		Percent imperviousness*	1.5	mean % imperviousness per planning unit	N	Literature	0	2	8
		Surface mining (active & legacy)	1	% of planning unit	Ν	Literature/Expert opinion	2	10	20
		Underground mining	1.5	% of planning unit	N	Reference/ stressed	0	3.82	18.30
	Hydrologic	Headwater streams (size class 1a)	1.5	% of total stream miles in planning unit	Р	Presence/ absence	-	0	-
	Connectivity	Local integrity score	1	mean score/planning unit	Р	Reference/ stressed	44.43	30.35	20.72

Model	Index	Metric Description (* "Critical Metric")	Weight	Units	Positive/ Negative Metric ^a	Threshold Method	Threshold: Very Good – Good	Threshold: Good – Fair	Threshold: Fair – Poor
	Hydrologic	Total wetland area	1	% of planning unit	Р	Presence/ absence	-	0	-
	Connectivity	Power plants	0.5	# / stream mi	N	Presence/ absence	-	0	-
		Forested riparian area	1.5	% of riparian area	Р	Reference/ stressed	98.73	91.60	57.00
	(Weight: 1)	Dams	1.5	#/ stream mi	Ν	Presence/absence	-	0	-
		All roads & rail in riparian area	2	mi/sq mi planning unit	Ν	Reference/ stressed	0	2.46	5.97
		Rare species in riparian area	1.5	# species/riparian area	Р	Presence/ absence	-	0	-
		Maximum taxa	1	maximum # taxa	Р	Reference/ stressed	27	21	13
	Biodiversity	Mussel streams	1	% of total stream miles in planning unit	Р	Presence/ absence	-	0	-
STREAMS	(Weight: 0.5)	Northeast habitat types in riparian area	1	#/riparian area	Р	Reference/ stressed	6	5	-
		Calcareous bedrock in riparian area	1	% of riparian area	Р	Presence/ absence	-	0	-
		Non-native invasive species in riparian area	1.5	# species/riparian area	N	Presence/ absence	-	0	-
-		Median Rapid Bioassessment Protocol score ^h	1	Index	Р	Literature	350	250	150
		Natural cover in riparian area	2	% of riparian area	Р	Reference/ stressed	99.88	97.01	75.48
		Agriculture in riparian area	1	% of riparian area	Ν	Reference/ stressed	0	0.07	0.12
		Grazing/pasture in riparian area	1	% of riparian area	Ν	Reference/ stressed	0	1.67	10.31
		Percent imperviousness in riparian area*	2	% of riparian area	Ν	Reference/stressed	0	2	8
	Riparian Habitat (Weight: 1)	Active surface mining in riparian area*	2	% of riparian area	N	Literature/Expert opinion	2	10	20
		Legacy surface mining in riparian area	1	% of riparian area	N	Literature/Expert opinion	2	10	20
		All wells in riparian area	1	#/sq mi riparian area	Ν	Reference/stressed	0	3.22	5.00
		All roads & rail in riparian area	1.5	miles/sq mi riparian area	N	Reference/stressed	0	2.46	5.97
		Forested headwater wetlands	2	% of planning unit	Р	Presence/absence	-	0	-
		Agriculture in wetland catchment	1	% wetland catchment	N	Reference/stressed	0	0.01	0.37
WETLANDS	Water Quality	Grazing/pasture in wetland catchment	1	% wetland catchment	N	Presence/absence	-	0	-
		Development in wetland catchment	1	% wetland catchment	N	Reference/stressed	0	0.04	2.17

Model	Index	Metric Description (* "Critical Metric")	Weight	Units	Positive/ Negative Metric ^a	Threshold Method	Threshold: Very Good – Good	Threshold: Good – Fair	Threshold: Fair – Poor
		Natural cover in wetland catchment	3	% wetland catchment	Р	Reference/stressed	98.78	92.97	72.82
	Water	Percent imperviousness in wetland catchment	1	mean % imperviousness wetland catchment	Ν	Literature	0	2	8
	Quality	All roads & rail in wetland catchment	1	# miles/sq mi wetland catchment	Ν	Presence/absence	-	0	-
	(Weight: 1)	Active surface mining in wetland catchment	2	% wetland catchment	N	Literature/Expert opinion	2	10	20
		All wells in wetland catchment	1	#/sq mi wetland catchment	Ν	Reference/stressed	0	0.60	3.90
		Total wetland area	2	% of planning unit	Р	Presence/absence	-	0	-
	Hydrology	Forested headwater wetlands	1	% of planning unit	Р	Presence/absence	-	0	-
	(Weight: 1)	Floodplain, forested wetlands	1	sq mi/wetland buffer	Р	Reference/stressed	-	0	-
		Floodplain area	1	% of planning unit	Р	Presence/absence	-	0	-
		Hydric soils	1.5	% of planning unit with hydric soils	Р	Presence/absence	-	0	-
		Rare species in wetland buffer	1.5	# species/sq mi wetland buffer	Р	Presence/absence	-	0	-
	Biodiversity	Calcareous bedrock in wetland buffer	1	% of wetland buffer	Ρ	Presence/absence	-	0	-
WETLANDS	(Weight: 0.5)	Northeast habitat types in wetland buffer	1	# types in wet buffer/planning unit	Ρ	Reference/stressed	5	3	-
		Non-native invasive species in wetland buffer	1.5	# species/sq mi wetland buffer	Ν	Presence/absence	-	0	-
		Natural cover in wetland buffer	2	% of wetland buffer	Р	Reference/stressed	92.76	82.63	58.95
		Agriculture in wetland buffer	1	% of wetland buffer	Ν	Presence/absence	-	0	-
		Grazing/pasture in wetland buffer	1	% of wetland buffer	Ν	Reference/stressed	0	1.16	26.55
	Wetland	Development in wetland buffer*	2	% of wetland buffer	Ν	Presence/absence	-	0	-
	Habitat	Mean forest patch size within wetland buffer	1	mean sq mi forest block size in wetland buffer/planning unit	Ρ	Reference/stressed	14.37	3.23	-
	(Weight:1)	All wells in wetland buffer	1.5	#/wetland buffer	N	Presence/absence	-	0	-
		Active surface mining in wetland buffer*	2	% of wetland buffer	Ν	Reference/stressed	2	10	20
		Legacy surface mining in wetland buffer	1	% of wetland buffer	N	Reference/stressed	2	10	20
		All roads & rail in wetland buffer	1	miles/sq mi in wetland buffer	Ν	Reference/stressed	0	0.93	5.99

Fina	l Report
------	----------

Model	Index	Metric Description (* "Critical Metric")	Weight	Units	Positive/ Negative Metric ^a	Threshold Method	Threshold: Very Good – Good	Threshold: Good – Fair	Threshold: Fair – Poor
		Mean forest patch size	2	mean forest block size/planning unit	Ρ	Reference/stressed	10.43	2.40	0.77
		Local integrity score	1.5	avg score/planning unit	Р	Reference/stressed	44.43	30.35	20.72
		Development*	1.5	% of planning unit	Ν	Reference/stressed	0	0.11	1.55
		All roads & rail	1	miles/sq mi planning unit	Ν	Reference/stressed	0.13	1.66	2.79
	Habitat Connectivity	Energy transmission lines	0.5	miles/sq mi planning unit	Ν	Presence/absence	-	0	-
	(Weight: 1)	Gas pipelines	0.5	miles/sq mi planning unit	Ν	Presence/absence	-	0	-
		Wind turbines	0.5	#/sq mi planning unit	N	Presence/absence	-	0	-
		All wells	1	#/sq mi planning unit	Ν	Reference/stressed	0	2.28	5.47
		Active surface mining*	1.5	% of planning unit	Ν	Literature/Expert opinion	2	10	20
UPLANDS		Timber harvesting operations	0.5	sq mi/planning unit	N	Presence/absence	-	0	-
		Heterogeneity score	2	avg score/planning unit	Р	Reference/stressed	38	36	33
	-	Natural cover (forest, grassland, wetland)	2	% of planning unit	Р	Reference/stressed	98.59	94.00	79.96
	Habitat	Active surface mining*	1.5	% of planning unit	N	Literature/Expert opinion	2	10	20
	Quality	Legacy surface mining	1	% of planning unit	N	Literature/Expert opinion	2	10	20
	(Weight:1)	Timber harvesting operations	1	sq mi/sq mi planning unit	Ν	Presence/absence	-	0	-
		Agriculture	1	% of planning unit	Ν	Reference/stressed	0	0.01	0.1
		Grazing/pasture	1	% of planning unit	Ν	Reference/stressed	0.06	4.14	9.76
		Development*	1.5	% of planning unit	Ν	Reference/ stressed	0	0.11	1.55
		Rare species	1.5	#/sq mi planning unit	Р	Presence/ absence	-	0	-
	Biodiversity	Northeast habitat types	1	#/planning unit	Р	Reference/ stressed	7	5	-
	(Weight: 0.5)	Calcareous bedrock	1	% of planning unit	Р	Presence/ absence	-	0	-
		Non-native invasive species	1.5	#/sq mi planning unit	N	Presence/ absence	-	0	-
		Percent tree basal area loss	2	% of planning unit	Ν	Reference/ stressed	3	15	30

^a Positive metrics are characterized by higher values indicating higher quality, negative metrics are characterized by lower values indicating higher quality

^b To enable comparison among different water quality parameters and among planning units, an index was calculated based on the WVDEP's water quality standards. Highest quality values were assigned the value 400, values higher than impairment level but not in the highest category were assigned the value 300, values considered impaired were assigned the value 200, and values considered severely impaired were assigned the value 100. The values 400, 300, 200, and 100 are analogous to the categories Very Good, Good, Fair, and Poor, respectively.

^c Index values for pH values were assigned as follows: >10 or <5: 100, >9 or <6: 200, >8 or <6.5: 300, between 6.5 and 8 (inclusive): 400.

^d Index values for sulfate values were assigned as follows: >250 mg/l: 100, >50 mg/l and <=250 mg/l: 200, >25 mg/l and <=50: 300, <=25 mg/l: 400.

^e Index values for specific conductivity values were assigned as follows: >835 µmhos/cm: 100, >500 µmhos/cm and <=835 µmhos/cm: 200, >200 and <=500 µmhos/cm: 300, <=200 µmhos/cm: 400.

^f Index values for GLIMPSS values were assigned as follows: <50: 100, <100 and >=50: 200, <125 and >=100: 300, >=125: 400. Based on percent threshold values of the modified GLIMPSS (CF), which excludes genus-level Chironimidae.

^g Index values for an added Sedimentation/Embededdness score, two components of the RBP, assigned as follows: <11: 100, <21 and >=11: 200, <31 and >=21: 300, >=31: 400.

^h Index values for the Total RBP score, assigned as follows: <60: 100, <110 and >=60: 200, <160 and >=110: 300, >=160: 400.

3.3.6 Metric Scores

Each metric received an objective score according to the thresholds developed in the objective classification, placing the metric into one of the four quality categories: Very Good, Good, Fair, or Poor. To be able to aggregate the metric scores to index scores and ultimately to model scores, objective categories were translated to a numerical rating for each metric, where the categories Very Good, Good, Fair, and Poor were assigned the values 4, 3, 2, and 1, respectively.

To compare planning units relative to each other, a relative score for each planning unit was calculated in addition to the objective score. Relative scores were defined by scaling the results for each metric on a scale from 0 to 1 (0 being defined as the lowest quality value and 1 being defined as the highest quality value for a particular metric over all planning units in the watershed). For example, to rank according to the amount of forested riparian area, a positive metric where a high value indicated a higher quality, the highest scoring planning unit's metric was set to a value of 1 and the lowest scoring planning unit was set to a value of 0, with all remaining scores distributed between 0 and 1. Conversely, to score for the amount of mining in a planning unit, a negative metric where a higher value indicated lower quality, the highest scoring planning unit's metric was set to a value of 0 and the lowest scoring planning unit was set to a value of 1. These scores were determined for both HUC12 and NHDPlus catchments.

Table 17 illustrates the value, relative score, objective category, and objective score for several catchments for three metrics: percent forested riparian area, percent of planning unit with surface mines, and roads and railroads in the riparian area.

3.3.7 Index Scores

Metric scores were aggregated, according to their assigned weights, to produce index scores. To compute the individual index scores (for example, Streams Water Quality) the following formula was used for each index:

Index objective score:

$$IOS = \frac{MOS_1 * MW_1 + MOS_2 * MW_2 + \dots + MOS_n * MW_n}{MW_1 + MW_2 + \dots + MW_n}$$

Where:IOS = index objective scoreMOS_i = metric i objective score, where Very Good = 4, Good = 3, Fair = 2, Poor = 1MW_i = metric i weight

These results were standardized by assigning them to the four objective categories according to the following definitions:

$$IOS > 3.5 \rightarrow 4 (Very Good)$$

2.5 < IOS $\leq 3.5 \rightarrow 3 (Good)$
1.5 < IOS $\leq 2.5 \rightarrow 2 (Fair)$
IOS $\leq 1.5 \rightarrow 1 (Poor)$

Table 17. Example Values, Relative Scores, Objective Categories, and Objective Scores for Selected
Catchments and Metrics

Metric	Catchment ID	Value	Relative Score	Objective Category	Objective Score
	C1167	100	1	Very Good	4
	C1277	98.79	0.9872	Very Good	4
Percent	C932	98.50	0.9843	Good	3
Forested	C622	91.88	0.9178	Good	3
Riparian	C995	82.71	0.8259	Fair	2
Area	C1336	61.43	0.6124	Fair	2
	C592	44.35	0.4409	Poor	1
	C662	10.17	0.0981	Poor	1
	C998	0	1	Very Good	4
	C1018	1.71	0.9828	Very Good	4
Percent of	C874	3.12	0.9686	Good	3
Planning Unit with	C359	6.93	0.9303	Good	3
Surface Mines	C999	10.51	0.8942	Fair	2
	C184	16.77	0.8313	Fair	2
IVIII163	C210	23.61	0.7625	Poor	1
	C873	92.65	0.0680	Poor	1
	C998	0	1	Very Good	4
Roads and	C647	0	1	Very Good	4
Railroads in	C1065	1.05	0.9514	Good	3
Riparian	C582	2.03	0.9061	Good	3
Area (mi	C1055	2.56	0.8820	Fair	2
roads/sq mi	C815	4.47	0.7936	Fair	2
planning unit)	C387	6.41	0.7042	Poor	1
unity	C62	21.67	0.2422	Poor	1

Index relative score:

$$IRS = \frac{MRS_1 * MW_1 + MRS_2 * MW_2 + \dots + MRS_n * MW_n}{MW_1 + MW_2 + \dots + MW_n}$$

Where:

IRS = index relative score
MRS_i = metric i relative score (between 0 and 1)
MW_i = metric i weight

A combined score was then calculated for every index for each planning unit, consisting of the objective category score added to the relative score, resulting in the possible values for each index ranging from the lowest possible score of 1 (a Poor catchment that also has the lowest possible value relative to the other catchments) to the highest possible score of 5 (a Very Good catchment that is also the highest relative quality compared to the other catchments). Table 18 gives examples of the Streams/Riparian Areas model indices and their corresponding objective, relative, and combined scores.

Final Report

Table 18. Example Index Objective, Relative, and Combined Results for Selected Catchments for the Streams/Riparian Areas Model

	Index Objective Scores					Index Objective Scores, standardized				
Index	Water Quality	Water Quantity	Habitat Connectivity	Biodiversity	Riparian Habitat	Water Quality	Water Quantity	Habitat Connectivity	Biodiversity	Riparian Habitat
Index Weight	1	1	1	0.5	1	1	1	1	0.5	1
C1235	3.81	3.75	3.59	3.50	3.74	4	4	4	3	4
C721	3.78	3.56	3.53	2.93	3.70	4	4	4	3	4
C191	3.36	3.56	3.53	2.76	3.48	3	4	4	3	3
C920	3.25	3.44	3.34	2.26	3.30	3	3	3	2	3
C519	2.00	3.31	3.59	2.67	3.65	2	3	4	3	4
C954	3.11	2.00	2.75	2.50	2.00	3	2	3	3	2
C765	2.53	2.53	2.88	1.51	2.00	3	3	3	2	2
C27	2.00	2.00	1.85	2.67	1.00	2	2	2	3	1
C872	1.00	1.00	2.97	1.51	1.00	1	1	3	2	1

	Index Relative Scores					Index Combined Scores				
Index	Water Quality	Water Quantity	Habitat Connectivity	Biodiversity	Riparian Habitat	Water Quality	Water Quantity	Habitat Connectivity	Biodiversity	Riparian Habitat
Index Weight	1	1	1	0.5	1	1	1	1	0.5	1
C1235	1.00	1.00	0.94	0.91	1.00	5.00	5.00	4.94	3.91	5.00
C721	0.99	0.99	0.82	0.17	0.99	4.99	4.99	4.82	3.17	4.99
C191	0.90	1.00	0.93	0.50	0.97	3.90	5.00	4.93	3.50	3.97
C920	0.98	1.00	0.89	0.06	0.97	3.98	4.00	3.89	2.06	3.97
C519	0.76	0.98	0.89	0.13	0.99	2.76	3.98	4.89	3.13	4.99
C954	0.88	0.98	0.63	0.37	0.93	3.88	2.98	3.63	3.37	2.93
C765	0.88	0.90	0.78	0.00	0.92	3.88	3.90	3.78	2.00	2.92
C27	0.65	0.95	0.31	0.38	0.67	2.65	2.95	2.31	3.38	1.67
C872	0.71	0.78	0.74	0.00	0.66	1.71	1.78	3.74	2.00	1.66

Index combined score:

ICS = IOS + IRS

Where: ICS = index combined score

These results were again standardized to the four objective categories according to the following definitions:

 $\begin{array}{ll} ICS \geq 4 & \rightarrow 4 \ (Very \ Good) \\ 3 \leq ICS < 4 & \rightarrow 3 \ (Good) \\ 2 \leq ICS < 3 & \rightarrow 2 \ (Fair) \\ ICS < 2 & \rightarrow 1 \ (Poor) \end{array}$

The combined score indicates the planning unit's relative ranking within the respective category compared to all other planning units in that HUC8 watershed. The objective and relative ranking methods convey different information about the planning unit, and provide an additional level of analysis to help an end user make decisions about conservation projects. For example, in Table 16, while both C1235 and C721 catchments are in the Very Good category for Water Quality, C1235 is slightly higher quality than C721 and may be considered a slightly higher priority for conservation, all other factors being equal. However, both are considered to be in the ideal ecological condition for water quality.

3.3.8 Model Scores

Index scores were aggregated to produce a score for each model: Streams/Riparian Areas, Wetlands, and Uplands. The aggregated model scores are referred to as "overall scores" to differentiate them from the individual index scores.

Model objective score:

$$ModOS = \frac{IOS_1 * IW_1 + IOS_2 * IW_2 + \dots + IOS_n * IW_n}{IW_1 + IW_2 + \dots + IW_n}$$

Where:

IOS_i = index i objective score IW_i = index i weight ModOS = model objective score

These results were once again grouped into the four categories according to the same standardization as the index objective scores:

 $\begin{array}{l} ModOS > 3.5 \ \rightarrow 4 \ (Very \ Good) \\ 2.5 < ModOS \leq 3.5 \ \rightarrow 3 \ (Good) \\ 1.5 < ModOS \leq 2.5 \ \rightarrow 2 \ (Fair) \\ ModOS \leq 1.5 \ \rightarrow 1 \ (Poor) \end{array}$

Model relative score:

$$ModRS = \frac{IRS_1 * IW_1 + IRS_2 * IW_2 + \dots + IRS_n * IW_n}{IW_1 + IW_2 + \dots + IW_n}$$

Where:IRSi = index i relative scoreIWi = index i weightModRS = model relative score

A combined overall model score was then calculated using the same method as for individual indices above, to produce an overall combined score for each model (Streams/Riparian Areas, Wetlands, and Uplands). Table 19 lists examples of the Streams/Riparian Areas model objective, relative, and combined results aggregated from the results for all Streams indices (Water Quality, Water Quantity, Hydrologic Connectivity, Biodiversity, and Riparian Habitat indices) selected catchments. For example, both C1235 and C721 catchments are in the Very Good category and are therefore considered to be in an ideal ecological condition and priorities for conservation, though C1235 is slightly higher quality than C721, and may be considered a slightly higher priority, all other factors being equal.

Model combined score:

ModCS = ModOS + ModRS

Where: ModCS = model combined score

The combined results were standardized to the four quality categories as follows:

 $\begin{array}{ll} ModCS \geq 4 & \rightarrow 4 \; (Very \; Good) \\ 3 \leq ModCS < 4 & \rightarrow 3 \; (Good) \\ 2 \leq ModCS < 3 & \rightarrow 2 \; (Fair) \\ ModCS < 2 & \rightarrow 1 \; (Poor) \end{array}$

Catchment ID	Objective Score	Standardized Objective Score	Objective Category	Relative Score	Combined Score
C1235	3.70	4	Very Good	0.98	4.98
C721	3.56	4	Very Good	0.86	4.86
C191	3.40	3	Good	0.90	3.90
C920	3.21	3	Good	0.86	3.86
C519	3.09	3	Good	0.82	3.82
C954	2.47	2	Fair	0.80	2.80
C765	2.38	2	Fair	0.77	2.77
C27	1.82	2	Fair	0.62	2.62
C872	1.49	1	Poor	0.64	1.64

 Table 19. Example Model Objective, Relative, and Combined Results for Selected Catchments for the

 Streams/Riparian Areas Model

The calculation of scores occurred at both planning unit levels, generated independently of each other:

- a ranking of HUC12 watersheds in terms of their overall model combined scores for each priority model (Streams/Riparian Areas, Wetlands, and Uplands) and each index combined score (e.g., Water Quality, Biodiversity, Habitat Connectivity, etc.), and
- 2. a ranking of NHDPlus catchments based on overall model and index combined scores.

Through this process, three Priority Models were generated (Figures 11 - 13): a Streams/Riparian Areas Priority Model, a Wetlands Priority Model, and an Uplands Priority Model. These models remain separate, as they each identify a key landscape that was independently ranked. The analysis presents the final combined scores for each planning unit (HUC12 and NHDPlus catchment), with a high score indicating a higher conservation priority within that Priority Model.

3.3.9 Example Index and Model Scores Calculation

To illustrate the methodology outlined above, an example is presented to clarify how the relative, objective, and combined scores were produced for the Streams Water Quality index and Streams/Riparian Area model for one particular catchment, C1235. Table 20 shows the metric results for this catchment for the Streams Water Quality index. Applying the formulas from Section 3.3.6 and the metric values from Table 20, the Streams Water Quality (SWQ) index objective score was calculated as:

$$IOS = \frac{4 * 2 + 4 * 2 + 4 * 1.5 + 4 * 2 + 4 * 2 + 4 * 1 + 3 * 1 + 4 + 1 + 3 * 2 + 4 * 1.5}{2 + 2 + 1.5 + 2 + 2 + 1 + 1 + 1 + 2 + 1.5} = \frac{61}{16} = 3.81$$

which corresponds to the index objective score in Table 18. No water quality data were available for this planning unit and are therefore excluded from the analysis.

Similarly, the SWQ index relative score is:

$$IRS = \frac{1 * 2 + 0.985 * 2 + 1 * 1.5 + 1 * 2 + 1 * 2 + 1 * 1 + 1 * 1 + 1 * 1 + 0.988 * 2 + 1 * 1.5}{2 + 2 + 1.5 + 2 + 2 + 1 + 1 + 1 + 2 + 1.5}$$
$$= \frac{15.946}{16} = 0.997 (rounded to 1.00)$$

which corresponds to the index relative score in Table 18.

To calculate the ICS, the IOS is standardized to 4 (as it is greater than 3.5), and the IRS added to it:

$$ICS = 4 + 1.00 = 5.00$$

which corresponds to the index combined score in Table 18, and is considered to be in the Very Good category.

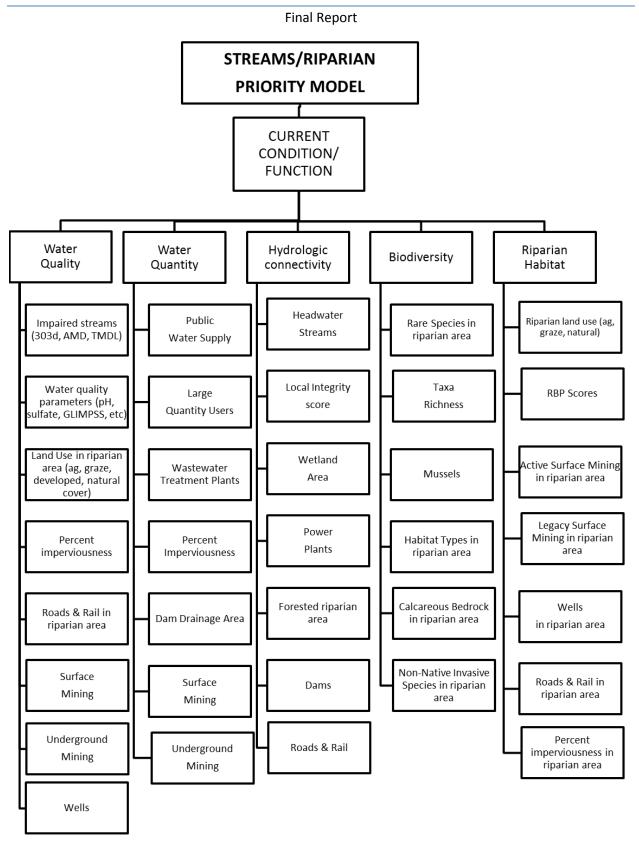


Figure 11. Streams/Riparian Areas Priority Model Flowchart

WVWAPP Little Kanawha River Watershed Assessment

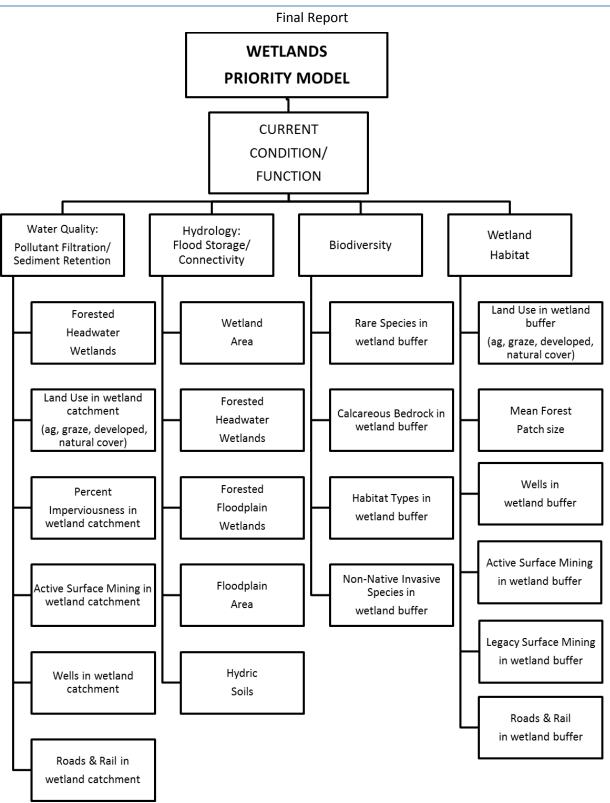


Figure 12. Wetlands Priority Model Flowchart

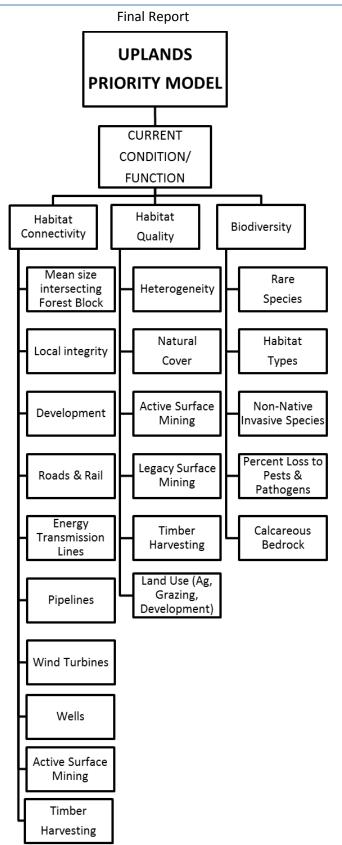


Figure 13. Uplands Priority Model Flowchart

To calculate the Streams/Riparian Areas Model objective and relative scores, all index scores in Table 18 are used:

$$ModOS = \frac{3.81 * 1 + 3.75 * 1 + 3.59 * 1 + 3.50 * 0.5 + 3.74 * 1}{1 + 1 + 1 + 0.5 + 1} = \frac{16.64}{4.5} = 3.70$$

which corresponds to the model objective score in Table 17, and places the index in the Very Good category.

$$ModRS = \frac{1.00 * 1 + 1.00 * 1 + 0.94 * 1 + 0.91 * 0.5 + 1.00 * 1}{1 + 1 + 1 + 0.5 + 1} = \frac{4.395}{4.5} = 0.98$$

which corresponds to the model relative score in Table 19.

The ModOS score is then standardized to 4 (as it is greater than 3.5), and the ModRS is added to it to produce the overall Streams/Riparian Area model combined score:

$$ModCS = 4 + 0.98 = 4.98$$

which corresponds to the model combined score in Table 19, and places the model into the Very Good category.

Table 20. Example Streams Water Quality Metrics for Catchment C1235 with Value, Objective Category,Objective Score, and Relative Score for Each Metric

Metric (* critical metrics)	Weight	Value	Objective Category	Objective Score	Relative Score
AMD, TMDL, 303(d) impaired streams	2	0 %	Very Good	4	1
Median pH*	2	а	а	а	а
Median sulfate	1	а	а	а	а
Median specific conductivity*	1.5	а	а	а	а
Median GLIMPSS	2	а	а	а	а
Median sedimentation & embeddedness	1	а	а	а	а
Percent imperviousness*	2	0 %	Very Good	4	0.985
All wells	1.5	0 %	Very Good	4	1
Surface mining (active & legacy)*	2	0 %	Very Good	4	1
Underground mining	2	0 %	Very Good	4	1
Agriculture in riparian area	1	0 %	Very Good	4	1
Grazing/pasture in riparian area	1	1.13 %	Good	3	1
Development in riparian area	1	0 %	Very Good	4	1
Natural cover in riparian area	2	98.80 %	Good	3	0.988
All roads & rail	1.5	0 %	Very Good	4	1

^a null value due to the absence of a WVDEP WAB water quality station in this catchment

3.4 Consolidated Analysis

The Consolidated Analysis consists of two main parts, a Future Threats assessment and an Opportunities assessment (Figure 14). It was originally envisioned to evaluate cumulative watershed effects, to analyze historical and possible future conditions where applicable data were available, to assess the impacts of past changes on the watershed, and to project future trends that might significantly impact the planning units over time (such as climate change or population growth). The objective was to incorporate the following into the consolidated analysis:

- a. Impacts and stresses to natural resources, functions, and sensitive species (and their habitats) and vegetative communities in the watershed
- b. Current and past land use changes in the watershed, evaluating their cumulative watershed effects on natural resource condition and function
- c. The extent and location of riparian, wetland, and upland loss compared to historic conditions, including the loss of any species or vegetative communities
- d. Natural resources, functions, and/or services that have been lost or degraded, where they are, and how significantly they have been impacted
- e. Future threats analysis
- f. Projected land use change with the potential to negatively impact natural resource value and function (population growth and urban expansion, planned energy projects)
- g. Potential for increased resource extraction activities due to the presence of undeveloped natural resources (unmined coal, high wind or geothermal energy potential, Marcellus shale gas play)
- h. Potential effects of climate change
- i. Priority interest areas identifying portions of the landscape that are known priorities for protection by various federal, state, or non-governmental organizations

However, much of the data necessary for a comprehensive and thorough Consolidated Analysis was not consistently available for the five pilot HUC8 watersheds, and these datasets are listed in Section 5.3 as data gaps/needs identified for the state. For example, potential Marcellus shale development projections are not yet available from partner agencies, so the Marcellus shale thickness was used as a surrogate to estimate the probability of Marcellus shale development. Urban development projections were surprisingly lacking in West Virginia, except for the Morgantown area in the Monongahela watershed, and population projections were only available on a county-wide level. In contrast, the modeled resiliency and regional flow data, indicating potential response to climate change, are at a relatively fine scale. The latter two datasets are part of a larger analysis of the Northeast and Mid-Atlantic region conducted by The Nature Conservancy's Eastern Conservation Science program to identify geographic areas that are resilient in terms of providing species on the landscape the opportunity to adapt to a changing climate (Anderson et al. 2012). The concept of "resiliency" in this sense indicates that some areas may be able to buffer the effects of climate change by "offering a connected array of microclimates that allow species to persist." The analysis is based on two factors:

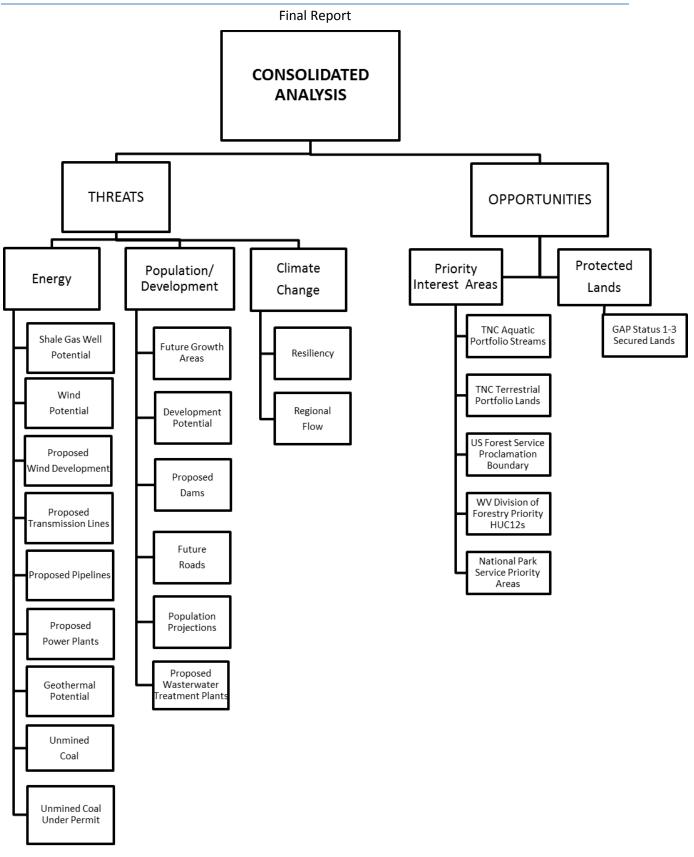


Figure 14. Consolidated Analysis Flowchart

landscape complexity (topography, elevation range, and wetland density) and landscape permeability (local connectedness and regional flow patterns, which are measures of landscape structure in terms of barriers, connected natural cover and land use patterns; Anderson et al. 2012). Detailed projections of temperature and precipitation changes are currently being developed for the Ohio River Basin by the USACE (Drum 2013) and may be incorporated into the Climate Change threats analysis when they become available.

Because of the inconsistent nature and variable scales of the different datasets, the Consolidated Analysis results were not calculated for the HUC12 or catchment-level planning units, but were instead calculated as gradients over the entire HUC8 watershed and are displayed as an informational layer rather than included in the model analysis results.

To display the cumulative known Future Threats to areas within the watershed, each metric was standardized from 0 to 100, with 100 indicating the lowest threat level for the metric in the HUC8 watershed, and 0 indicating the highest threat level. Metrics were weighted according to their significance in terms of affecting the overall future threat level of the watershed and summed to produce an overall index score. The indices were then combined using Esri's ArcGIS Spatial Analyst Raster Calculator tool to produce Threats Overall Results (a full list of metrics and assigned weights can be found in Table 21). This information was not included in the analysis results for each planning unit, but is meant to provide an additional set of information once the current condition of a planning unit has been determined.

The purpose of the second part of the Consolidated Analysis, the Opportunities assessment, was to provide information about currently protected areas, or areas that have been identified as priorities for protection by other organizations or regulatory agencies. This information may be helpful to entities planning protection or restoration activities in a given area by identifying potential partners or funding sources. Datasets included in the Opportunities assessment include permanently protected areas, The Nature Conservancy aquatic and terrestrial portfolios, West Virginia Division of Forestry priority areas, National Park Service priority areas, and National Forest proclamation boundaries.

Final Report

Table 21. Metrics Included in the Consolidated Analysis

Model	Index	Metric Description	Weight	Units
		Currently unmined area within permit boundary	2	% of planning unit
		Unmined area of mineable coal seams	2	% of planning unit
		Marcellus well potential, based on shale thickness	2	mean thickness/planning unit
	Energy	Modeled wind potential	2	% of planning unit
		Proposed wind turbine locations	1	#/sq mi planning unit
		Proposed energy transmission lines	1	mi/sq mi planning unit
		Proposed gas pipelines	1	mi/sq mi planning unit
		Proposed power plants	1	#/sq mi planning unit
FUTURE		High geothermal potential (temp>150 degrees)	1	% of planning unit
TUDEATC		Population projections	1	percent change, by county
THREATS	Population/	Areas designated for future development	1	% of planning unit
	Development	Proposed dam locations	1	#/stream mile
		Proposed future roads	1	mi/sq mi planning unit
		Proposed wastewater treatment plants	1	#/planning unit
	Climate Change	Resiliency score	1	avg score/planning unit
		Current density score	1	avg score/planning unit
		TNC aquatic portfolio streams	-	-
		TNC terrestrial portfolio lands	-	-
OPPORTUNITIES*	Priority Interest Areas	US Forest Service proclamation boundary	-	-
OFFORTUNITIES		WV Division of Forestry priority areas	-	-
		National Park Service priority areas	-	-
	Protected Lands	GAP Status 1-3 secured lands	-	-

*The "Opportunities" metrics/datasets are considered informational and were not part of an analysis, but are presented to aid decision-making. Therefore, these datasets do not have assigned weights or normalized units of measurement.

3.5 Data

3.5.1 Data Sources

Spatial data acquired for this study included:

- Surface water quality monitoring data
- Impaired streams (303(d), TMDL, AMD)
- Land use and land cover (LULC) data
- Surface and subsurface geology
- Soils
- Elevation (DEM)
- Stream network and drainage areas
- Wetlands location and type
- Species and habitat data
- Protected lands
- Infrastructure (roads, railroads, dams, energy transmission lines, pipelines)
- Mining, mineral extraction, oil and gas wells data
- Regulated sites (permitted discharge, landfills, toxic waste disposal, etc.)
- Demographics/population data
- Climate change models
- Political boundaries

Data were obtained from many sources including, but not limited to:

Federal agencies

- US Environmental Protection Agency
- US Geological Survey
- US Forest Service
- US Fish and Wildlife Service
- US Department of Agriculture
- US Department of Transportation
- US Census Bureau

State agencies

- WV Department of Environmental Protection
- WV Division of Natural Resources
- WV Division of Forestry
- WV Geological and Economic Survey
- WV Statewide Addressing and Mapping Board

Local agencies

- City/county/regional governments
- River or Watershed Associations

Non-profit organizations

The Nature Conservancy

Universities

- West Virginia University
- WV GIS Technical Center

For a thorough reference to all data sources and intended uses please see Appendix A: Detailed Data Source Information.

3.5.2 Data Quality

Data were selected or rejected based on their relevance, completeness, accuracy, quality, and age. The most current data available were used, except in cases where using historical data for comparison or trend prediction was desirable. For example, species occurrence data older than 20 years were not used since they are unlikely to reflect current conditions. Particular factors that caused data to be rejected included: lack of appropriate or complete metadata; data that do not accurately reflect the current status of the watershed; data that appear incomplete or significantly conflict with known quality-assured data (thus casting doubt on data quality); and data that were deemed irrelevant or redundant during the analysis.

Section 4: Results and Discussion

4.1 Current Condition Results and Discussion

4.1.1 Streams/Riparian Areas

Figures 15a and 15b show the overall results for the Streams/Riparian Areas landscape at the HUC12 and NHDPlus catchment scales, respectively, incorporating the scores for all the Streams/Riparian Priority Model indices. The Little Kanawha watershed has relatively high Streams scores compared to other watersheds assessed during the pilot project, most likely due to the mostly rural nature of the basin (which limits negative metrics like impervious cover and development) and the lack of significant mining activity. Additionally, the Little Kanawha is known to be currently underrepresented for water quality sampling, which may keep some issues from emerging in the analysis (Whitman 2013). Consequently, the Streams Overall results were mostly Good, with just a few planning units scoring in the Fair category. The two Fair HUC12s, Neal Run and Worthington Creek, contain the urban area of Parkersburg, and therefore have more development and related metrics that bring down scores in most indices. Many of the Fair-scoring catchments are also in this area in the northwest corner of the watershed, and other Fair catchments are near the smaller towns within the watershed (around Harrisville, Spencer, Glenville, Flatwoods, etc.). The Overall results therefore clearly show the influence of development and infrastructure on Streams scores. The south-central part of the watershed, with a density of high quality Good and even some Very Good catchments, emerges throughout the Streams indices as a high quality area, and these catchments should be considered as potential candidates for protection within the Little Kanawha watershed.

Similar patterns emerge in the Streams Water Quality (SWQ) index results (Figures 16a and 16b), with the Fair planning units mostly in the northwest of the watershed around Parkersburg, and the higher scores in the central corridor and southeast of the watershed. While the SWQ index does have four critical metrics, they are not a primary driver of the Fair results in this watershed – generally, planning units received Fair scores due to lack of natural cover (the Little Kanawha watershed has a comparatively significant amount of grazing and agriculture) and wells and/or roads and railroads. These Fair catchments would therefore be potential candidates for restoration activities. Most of the Very Good scoring planning units have no stream impairments, a minimal amount of impervious surface, and a high percentage of natural cover, and would be good candidates for protection activities. It is important to note, however, that the Little Kanawha watershed has a high density of oil and gas wells (Figure 17). Most of the catchments that scored Good did so for a variety of reasons and any candidate planning units chosen for protection purposes should be reviewed for all metrics scores to ensure they are compatible with the project's goals.

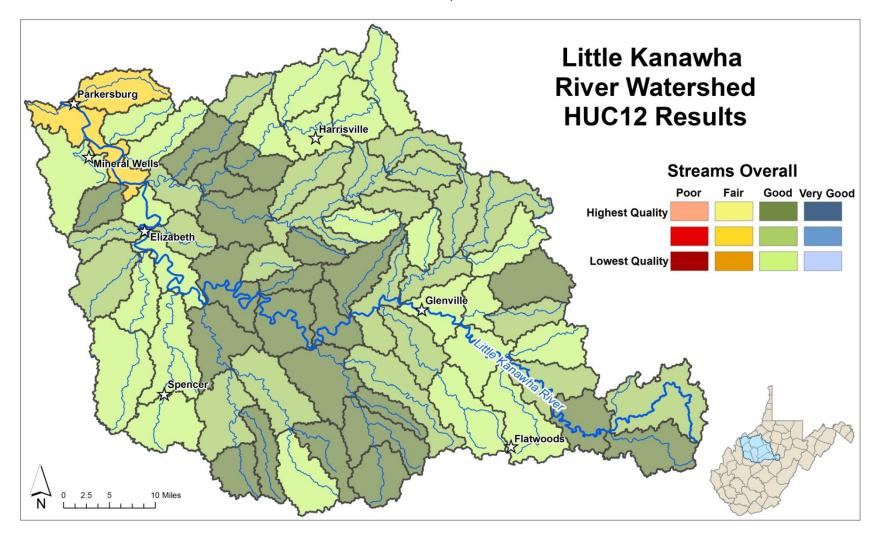


Figure 15a. Streams Overall Results – HUC12 Level

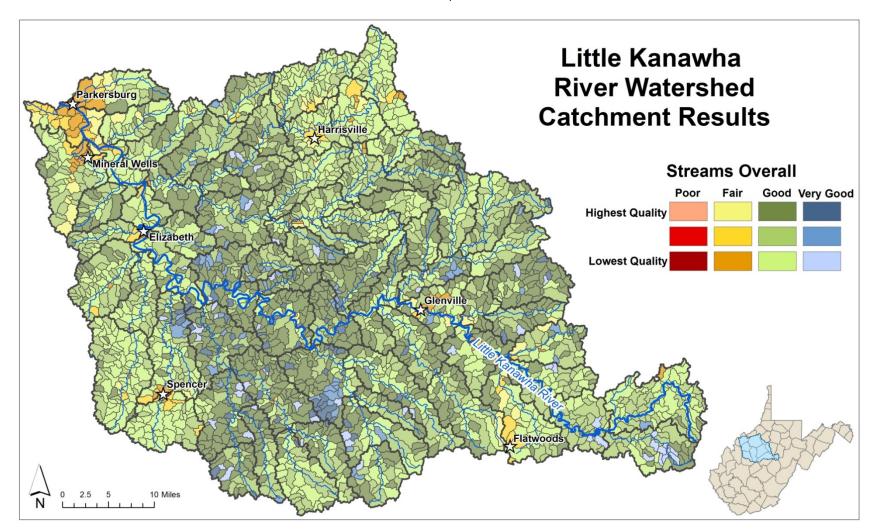


Figure 15b. Streams Overall Results – Catchment Level

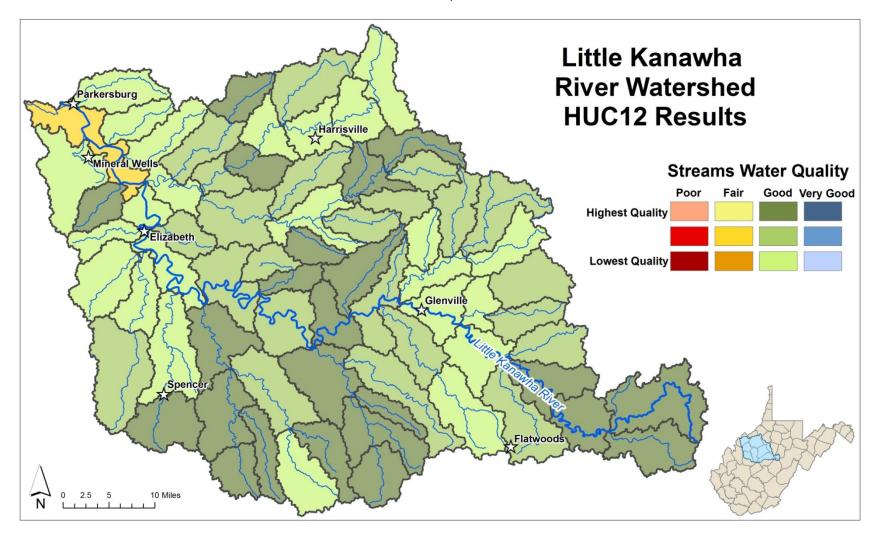


Figure 16a. Streams Water Quality Index Results – HUC12 Level

Final Report

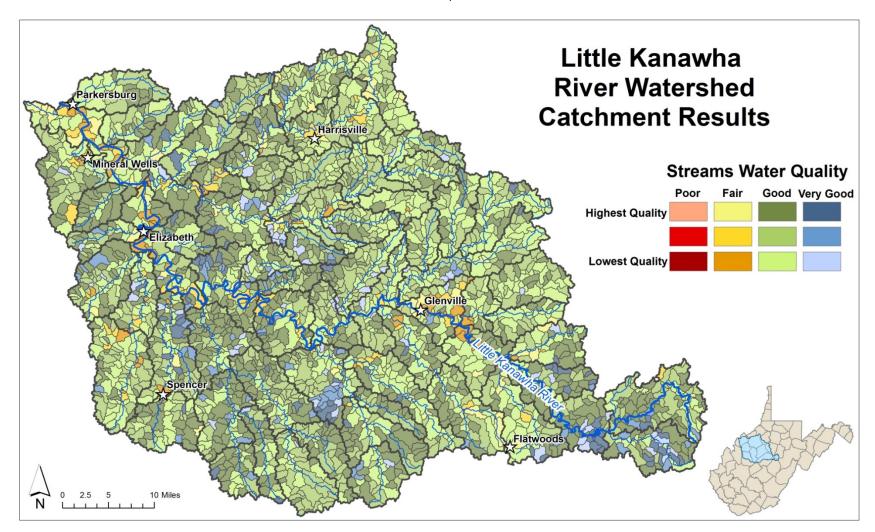


Figure 16b. Streams Water Quality Index Results – Catchment Level

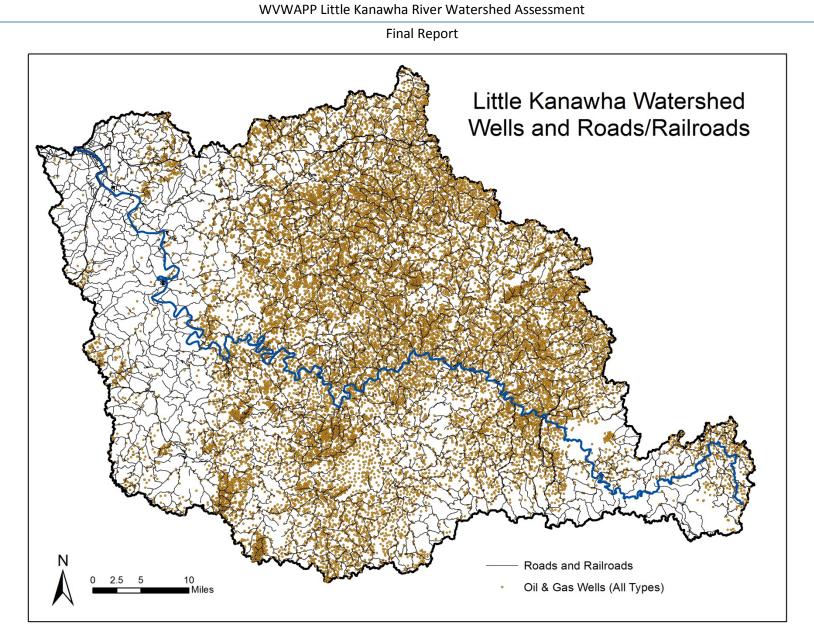


Figure 17. Little Kanawha Watershed – Wells and Roads/Railroads (WVGES 2012, WVDOT 2011)

Greater variability is evident across the watershed in the Streams Water Quantity (SWN) HUC12 results (Figure 18a). The Neal Run HUC12 scored a Poor, due to primarily to the critical metric of percent imperviousness, which is expected as this HUC12 contains the Parkersburg urban area; the same issue caused the Worthington Creek HUC12 to score a Fair. All of the Very Good HUC12s scored Good in all metrics and have no mining activity, raising their scores to the highest category as mining is relatively heavily weighted in this index. Those HUC12s scoring in the Good category were generally negatively impacted by features such as the presence of dams, public water supply intakes, or wastewater treatment plants. The locations of these features can often be distinguished on the catchment level results map (Figure 18b) by the lower scores around small towns with these features surrounded by Very Good catchments. Overall, the Little Kanawha watershed has very high SWN scores.

A few new trends emerge in the Streams Hydrologic Connectivity (SHC) index HUC12 results (Figure 19a). While the HUC12s around the Parkersburg area are in the Fair category, a few HUC12s around Harrisville were also Fair, mostly due to roads and railroads in the riparian area, lack of forested riparian area, the presence of dams, and low local integrity scores. Otherwise, most planning units scored Good in the SHC index, with some catchments scoring Very Good, particularly in the headwaters areas of Steer Creek and the Right Fork Little Kanawha in the southeast corner of the watershed (Figure 19b). Very Good catchments often have many headwaters streams, a high percentage of forested riparian area, and no roads or railroads, making them potentially good candidates for protection activities. Good catchments also have many headwaters, but often more infrastructure and less forested cover.

The Streams Biodiversity (SBD) index results show little variation at the HUC12 level (with mostly Very Good and Good scores), and a bit more variation at the catchment level, which may seem an apparent contradiction (Figures 20a and 20b). While a HUC12 may have many rare species or invasive species that collectively lower or raise its SBD index score, at the catchment level there are often none, or only one or two occurrences recorded within each planning unit. In planning units without recorded rare or invasive species the index results depend on the values of only two or three other metrics. Unfortunately, it is not known if no recorded occurrences are due to a lack of surveys in that area or an actual lack of occurrences. Catchments with Very Good scores all had Very Good northeast terrestrial habitat scores with the presence of calcareous bedrock. More than any other index, the Biodiversity index in each landscape should be reviewed in greater detail by potential users, by investigating which metrics are driving the final score. Biodiversity results are best viewed as informational, and should not be consulted as a primary or guiding index within the model without further evaluation of other index results and the individual Biodiversity metrics scores.

Final Report

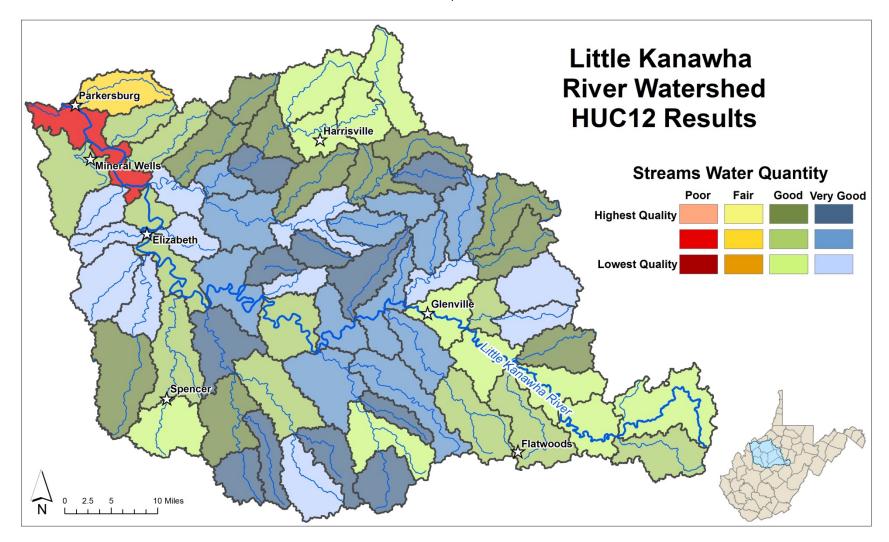


Figure 18a. Streams Water Quantity Index Results – HUC12 Level

Final Report

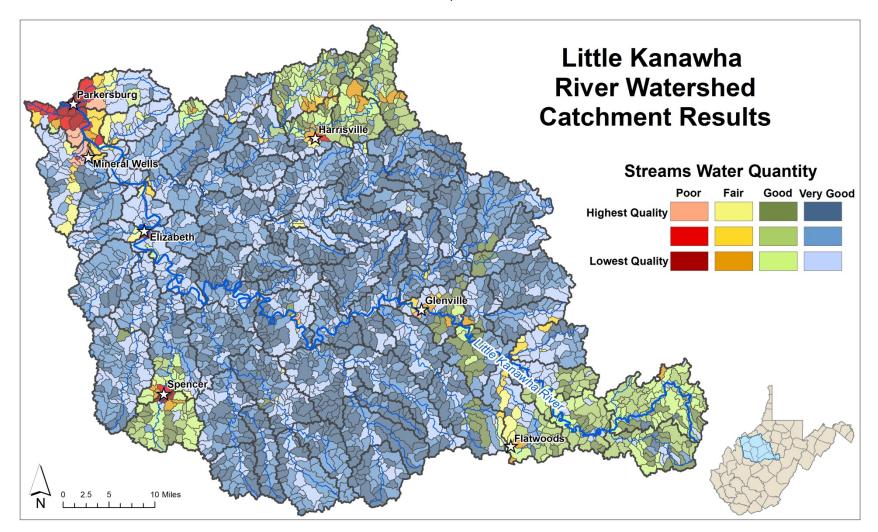


Figure 18b. Streams Water Quantity Index Results – Catchment Level

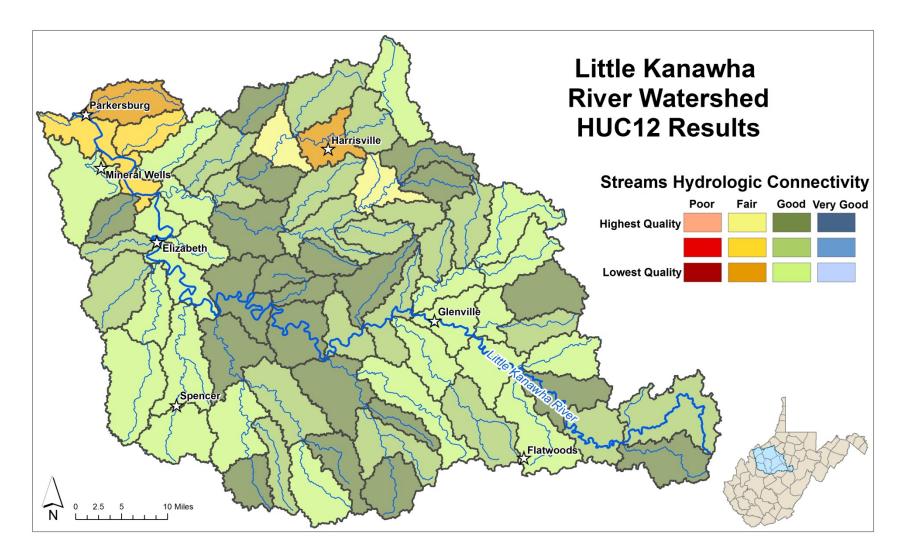


Figure 19a. Streams Hydrologic Connectivity Index Results – HUC12 Level

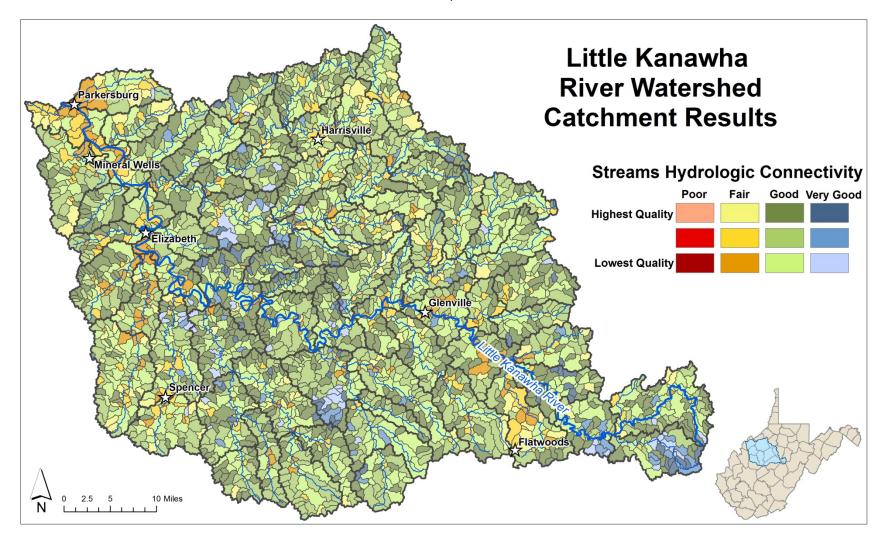


Figure 19b. Streams Hydrologic Connectivity Index Results – Catchment Level

Final Report

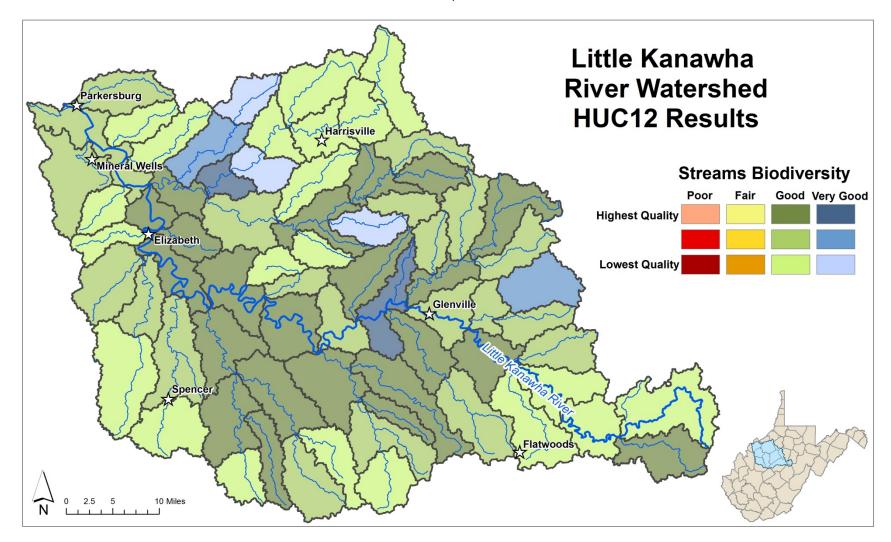


Figure 20a. Streams Biodiversity Index Results – HUC12 Level

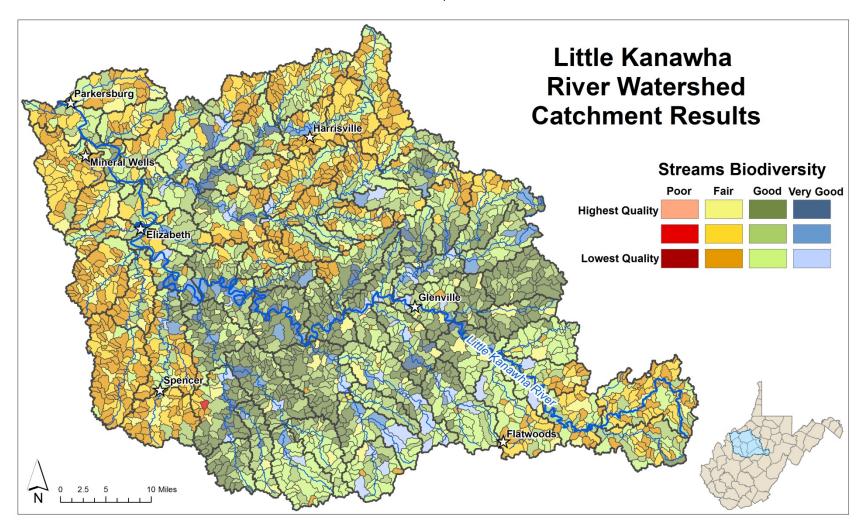


Figure 20b. Streams Biodiversity Index Results – Catchment Level

Final Report

The Streams Riparian Habitat (SRH) index results are interesting to interpret. At the HUC12 level the scores were all Good or Fair, with some of the Fair scores caused by the critical metric of percent imperviousness in the riparian area (Figure 21a). Otherwise, Fair HUC12 scores were generally a result of higher amounts of agriculture or grazing land cover. At the catchment level, this trend mostly disappears, with a vast majority of the catchments scoring Very Good (Figure 21b). This is largely due to the intact nature of the natural cover in the riparian area in the Little Kanawha watershed, with only an occasional higher density of roads and railroads and wells, but otherwise mostly undisturbed forested riparian area. All of the Poor catchments were caused by the percent imperviousness in the riparian area critical metric. Main metrics that resulted in a Fair or Good score at the catchment level included natural cover in the riparian area, and wells in the riparian area.

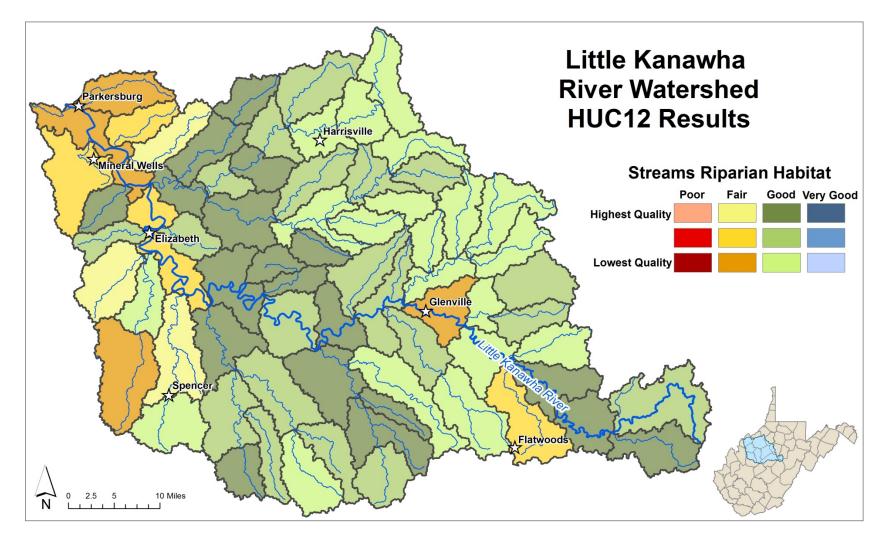


Figure 21a. Streams Riparian Habitat Index Results – HUC12 Level

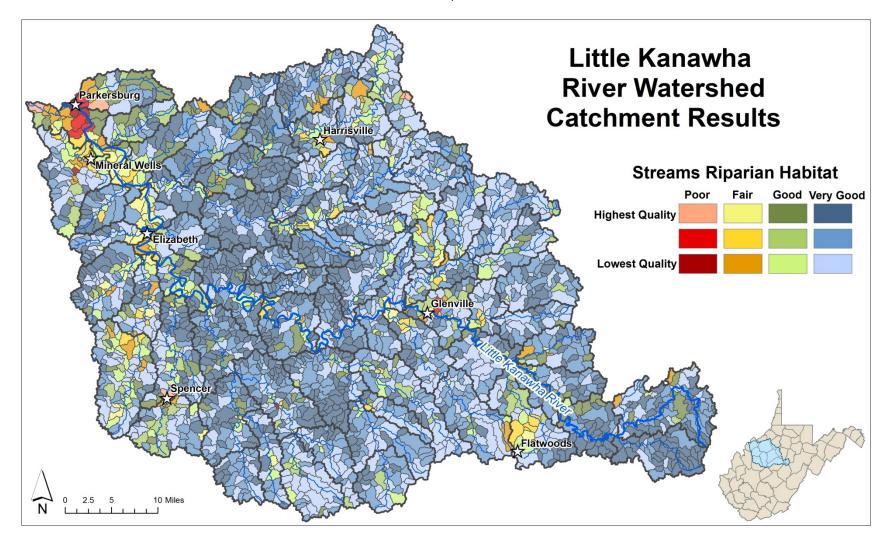


Figure 21b. Streams Riparian Habitat Index Results – Catchment Level4.1.2 Wetlands

Final Report

4.1.2 Wetlands

As previously stated, the wetlands NWI dataset was compiled over many years and published almost two decades ago, based on data from the 1970s and 1980s. Therefore, it is likely that wetlands locations and sizes have changed, some wetlands may no longer exist, or some wetlands may have been drained or converted to other land uses since they were mapped. New wetlands may also have been constructed or developed over time. Additionally, though most Wetlands metrics rely on data derived using existing wetland buffers or wetland catchments, the Wetlands Hydrology (WHY) includes two metrics that do not depend on the current existence of wetlands: hydric soils and floodplain area. These metrics represent the potential for wetland hydrology and the possible historic presence of wetlands that have been drained, and therefore a potential for wetland restoration activities exists. All planning units have values for the WHY index, but planning units that contain no NWI wetlands include null values for the WWQ, WBD and WWH indices. This can affect the Wetlands Overall results, as planning units without mapped wetlands but with hydric soils will automatically receive a Fair score due to the presence of wetlands hydrology, indicating that the potential for wetland restoration exists.

The Little Kanawha watershed has very few wetlands overall, with about 24% of the HUC12s and about 91% of the catchments having no mapped wetlands. Therefore, results at the HUC12 level should be interpreted with caution, as many HUC12s contain only one or just a few mapped wetlands. This is the case with the Beech Fork HUC12, the only HUC12 to receive a Very Good score, but has only one mapped wetland. Many of the Fair scores at the HUC12 level in the Overall results do not have mapped wetlands; their scores are based on the Wetlands Hydrology (WHY) index and the potential for wetland hydrology. Otherwise, the Little Kanawha had mostly Good scores for Overall Wetlands results, with concentrations of the relatively higher quality Good HUC12s in the northern and southern portions of the western half of the watershed (Figure 22a). The catchment level results had many Fair scores, largely due to the lack of mapped wetlands, indicating the potential for wetland restoration in these areas (Figure 22b).

Wetlands Water Quality (WWQ) results show the same trends as the Wetlands Overall results, with slightly lower quality overall. The Beech Fork HUC12 scored Very Good, as the wetland catchment for the mapped wetland within Beech Fork has 100% natural cover and no roads, though it does have some oil and gas wells. The Good and Fair HUC12s generally have more development and roads in the wetland catchment area, and occasionally more grazing and agriculture, with the main difference between Good and Fair HUC12s being the percentage of natural cover. Seventeen HUC12s have no mapped wetlands and did not receive a score for this index (Figure 23a). The catchment level WWQ results are similar to the HUC12 results, with Fair catchments largely in the vicinity of Parkersburg and smaller towns, with their associated development and infrastructure (Figure 23b). The Very Good catchments have 100% natural cover in the wetland catchment area, and would be potential candidates for protection activities.

Final Report

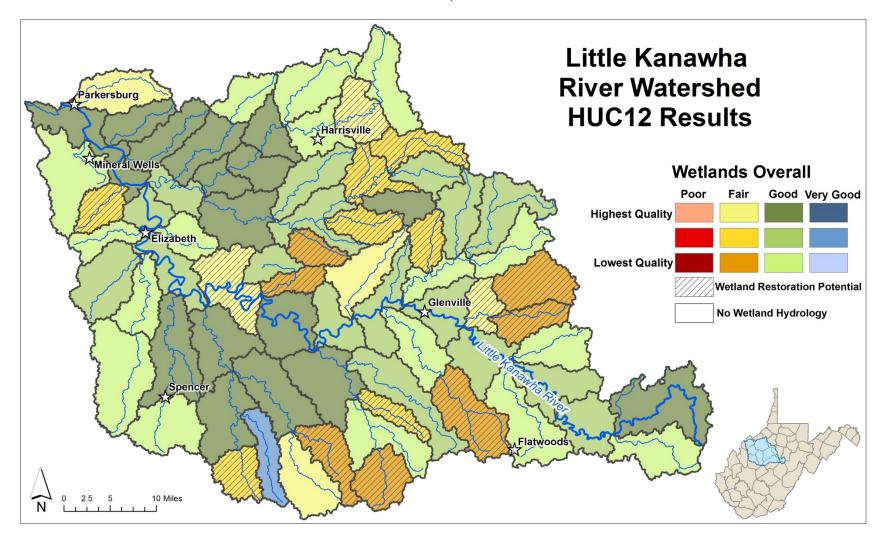


Figure 22a. Wetlands Overall Results – HUC12 Level

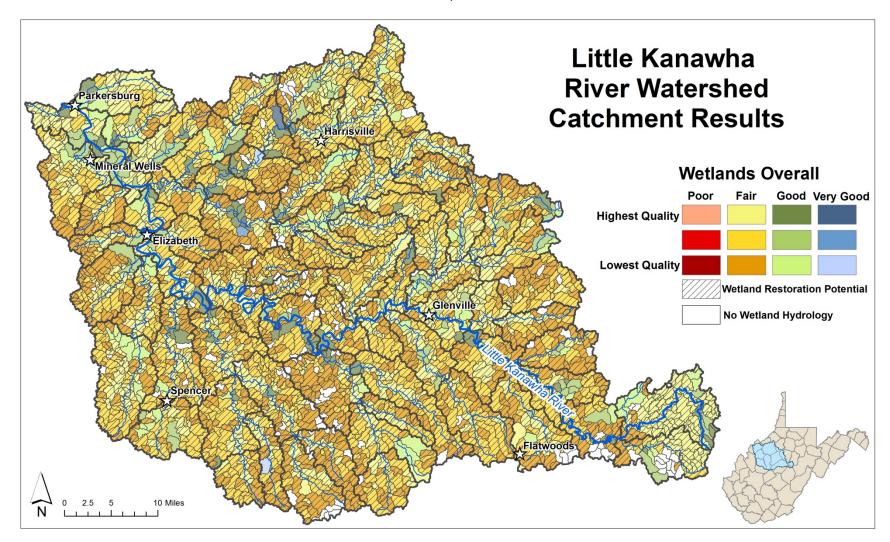


Figure 22b. Wetlands Overall Results – Catchment Level

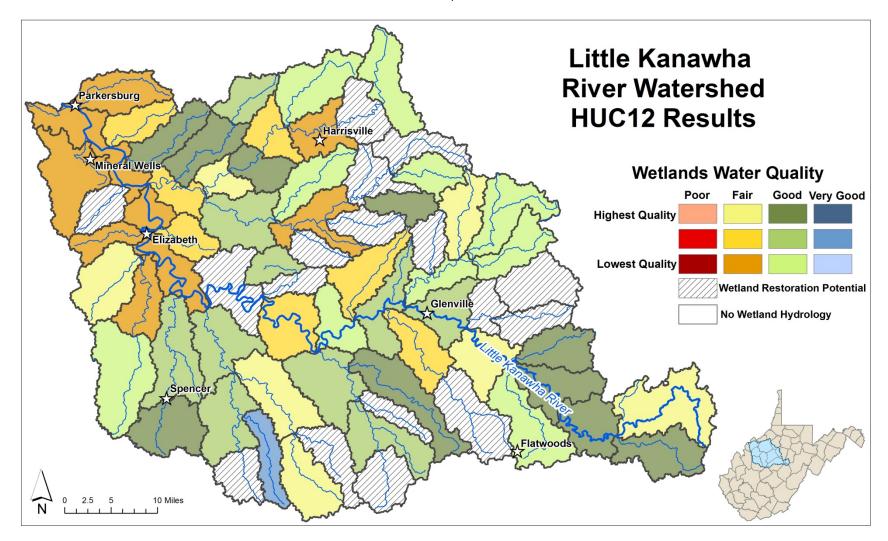


Figure 23a. Wetlands Water Quality Index Results – HUC12 Level

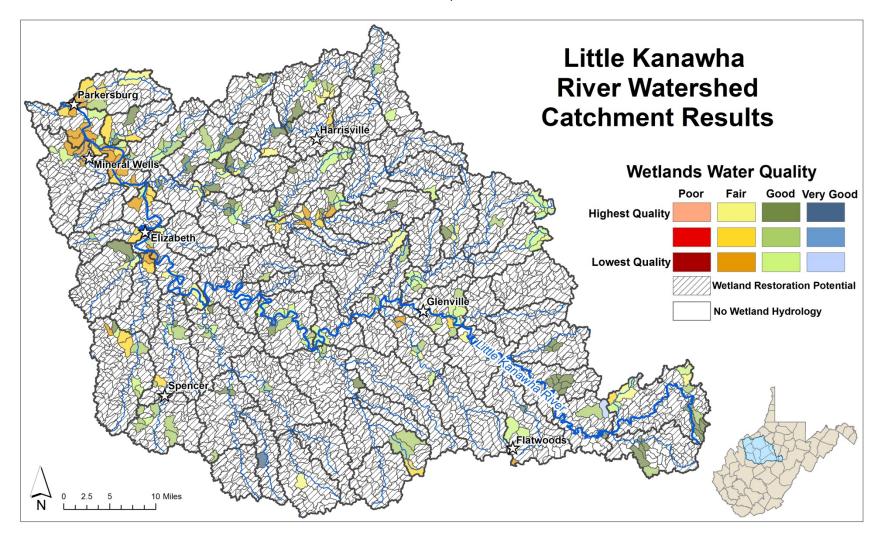


Figure 23b. Wetlands Water Quality Index Results – Catchment Level

Final Report

There is a general lack of variability in the Wetlands Hydrology (WHY) index results, which is expected (Figures 24a and 24b). This index is designed primarily to identify areas with extensive and well-connected existing wetlands, or areas that have no mapped wetlands but contain hydric soils and therefore have the potential to restore lost wetlands. All of the WHY metrics are presence/absence, meaning the metric will receive a Good if it has a value, and a Fair if it does not. The Little Kanawha watershed has hydric soils and floodplain area in every HUC12, therefore all HUC12s received a Good WHY score. The catchment level results are similar, with only a few catchments without wetlands hydrology. The few Fair WHY results at the catchment level are mostly planning units without floodplain area but some mapped wetlands.

The Wetlands Biodiversity (WBD) index only has four metrics, three of which are presence/absence. Fair HUC12s therefore either have fewer terrestrial habitat types, or recorded non-native invasive species occurrences than higher-scoring HUC12s (Figure 25a). The Very Good and Good HUC12s usually include calcareous bedrock, which provides the lift into the higher quality categories. The same situation applies to the catchment level results (Figure 25b). As mentioned previously, it is recommended that individual metrics within the WBD index are evaluated closely to determine which metric(s) most influenced the index score.

The Wetlands Wetland Habitat (WWH) index results are generally lower than other Wetlands indices, with several more Fair planning units at the HUC12 level (Figure 26a). The WWH index contains metrics based on the 50-meter wetland buffer around each mapped wetland, so factors like increased non-natural land use and increased infrastructure will bring down a score. Additionally, the WWH index includes two critical metrics, development and surface mining in the wetland buffer. While the Little Kanawha HUC8 has minimal mining, all of the Fair HUC12s also scored a Fair for development in the wetland buffer. The Beech Fork HUC12 emerged again as the only Very Good HUC12, again because of 100% natural cover in the wetland buffer. The same trends continue at the catchment level, with several Very Good catchments due to the high percentages of natural cover within the wetland buffer (Figure 26b).

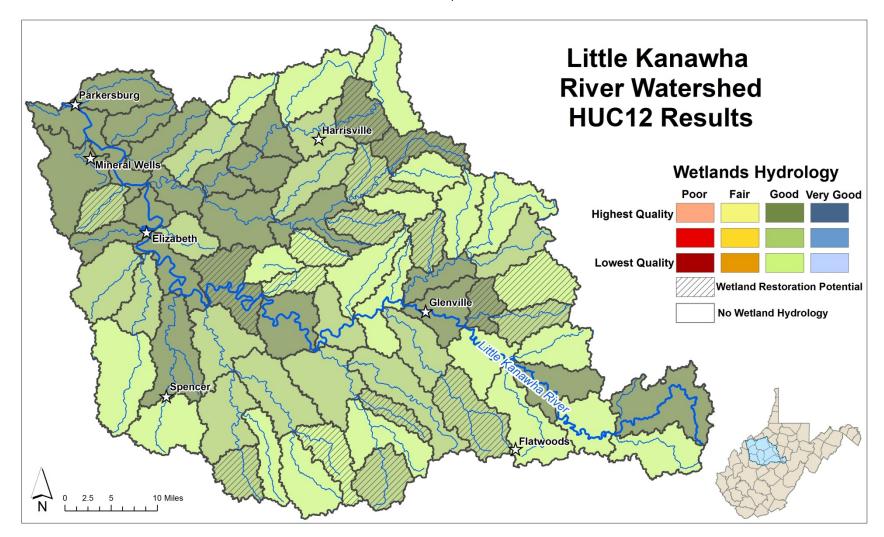


Figure 24a. Wetlands Hydrology Index Results – HUC12 Level

Final Report

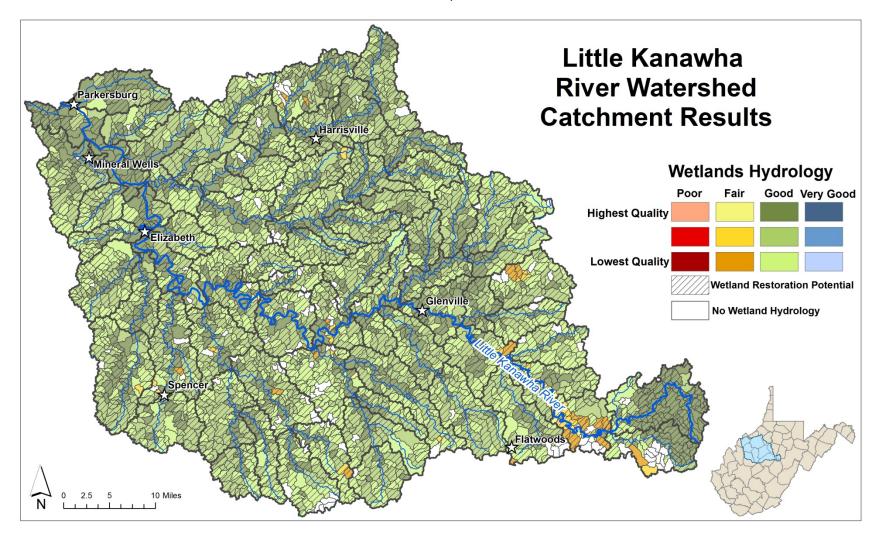


Figure 24b. Wetlands Hydrology Index Results – Catchment Level

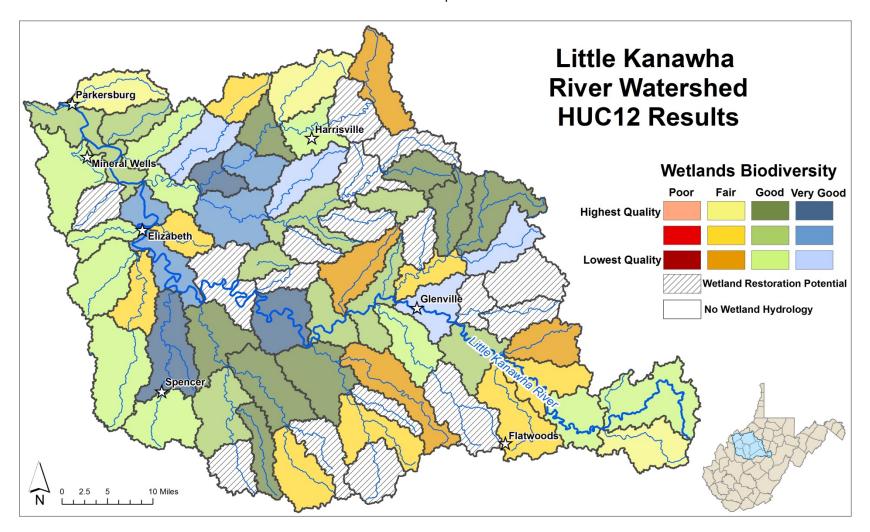


Figure 25a. Wetlands Biodiversity Index Results – HUC12 Level

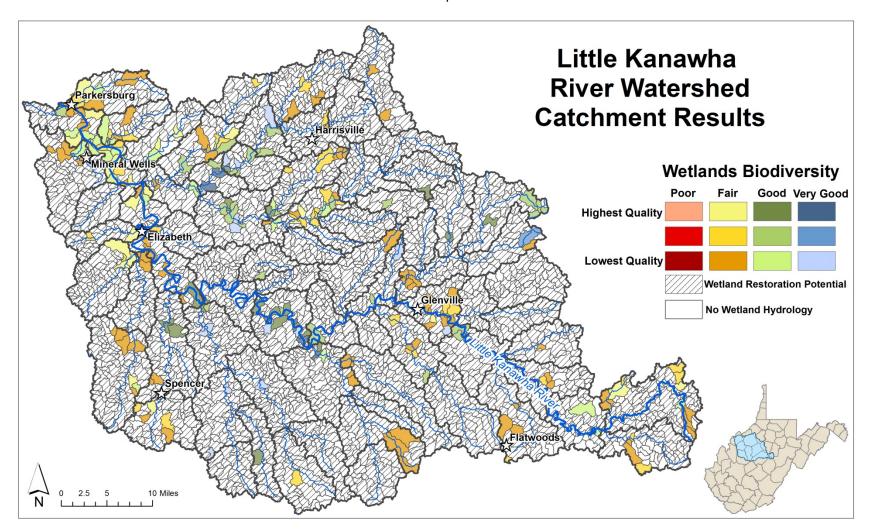


Figure 25b. Wetlands Biodiversity Index Results – Catchment Level

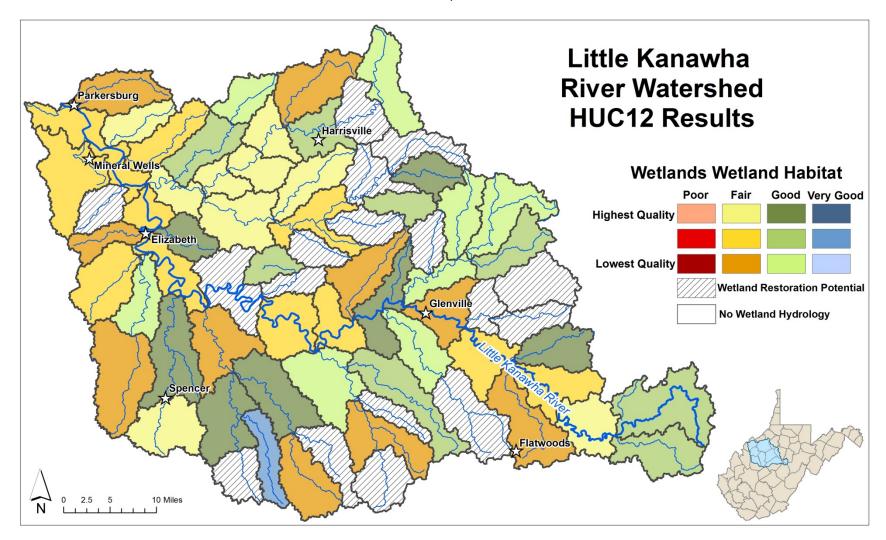


Figure 26a. Wetlands Wetland Habitat Index Results – HUC12 Level

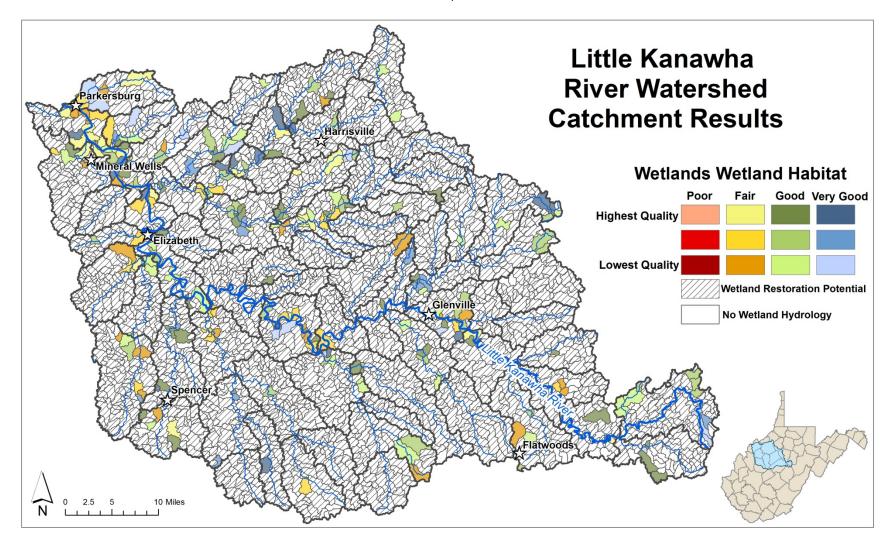


Figure 26b. Wetlands Wetland Habitat Index Results – Catchment Level

Final Report

4.1.3 Uplands

The Uplands Overall results for the Little Kanawha watershed are generally lower than the Streams and Wetlands, though the same patterns emerge, with lowest quality around the Parkersburg urban area and other developed areas like Harrisville and Glenville, and highest quality in the south and southeast (Figure 27a). Some of the results, particularly at the catchment level, are caused by infrastructure such as major highways dissecting the watershed. Development, a critical metric in two uplands indices, often accompanies such features (Figure 27b).

The Uplands Habitat Connectivity (UHC) index results are very similar to the Overall model results, with many of the same patterns (Figures 28a and 28b). The UHC index is largely driven by the presence of intact forests and lack of anthropogenic stressors, so the higher scoring areas are generally in the higher elevations in the headwaters regions and have large forest patches and little development or industrial activity. Development is a critical metric in the UHC index, so all of the Poor and many Fair planning units generally have high percentages of developed land use. Many of the Good catchments have no development and high local integrity scores. The Very Good catchments have high scores in most metrics, particularly the average size of intersecting forest patch, indicating that they may have unfragmented forests with a high percentage of natural cover, and making these areas potential candidates for protection activities.

The Uplands Habitat Quality (UHQ) index results are very similar to the UHC results, with a general slight increase in quality (Figures 29a and 29b). Development is also a critical metric in this index, so Fair and Poor scores for planning are often driven by the development metric. Good planning units generally have Good scores in heterogeneity, natural cover, and development, indicating that there is minimal anthropogenic disturbance. Very Good catchments often had Very Good natural cover scores, with most of them averaging about 99% natural cover.

The Uplands Biodiversity (UBD) index results (Figures 30a and 30b) generally agree with the trends seen in the Streams and Wetlands Biodiversity indices, though the UBD results include a few more concentrated areas of Fair and Poor catchments. This is likely due to an additional metric in the UBD index, the percent predicted tree basal area loss to pests and pathogens. The isolated pockets of Fair and Poor catchments are in areas with the highest predicted potential for tree basal area loss. Otherwise, most of the watershed's planning units scored Very Good or Good, at both scales of analysis

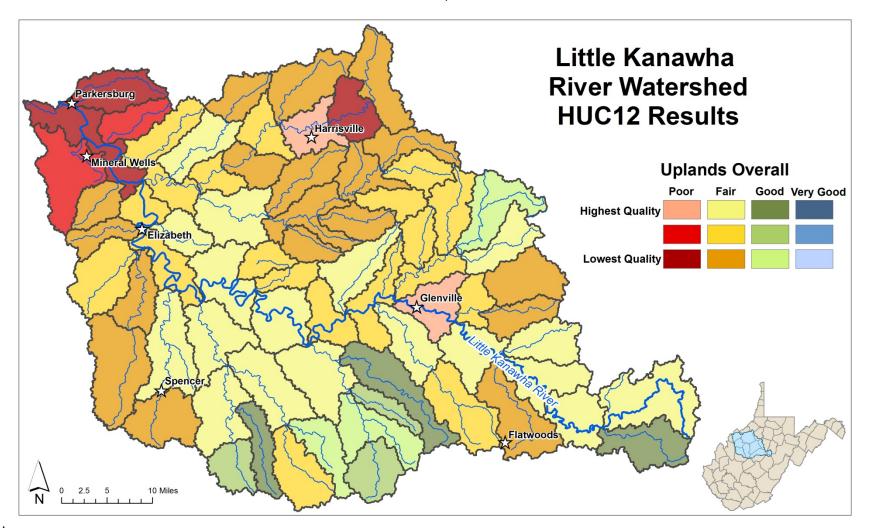


Figure 27a. Uplands Overall Results – HUC12 Level

Final Report

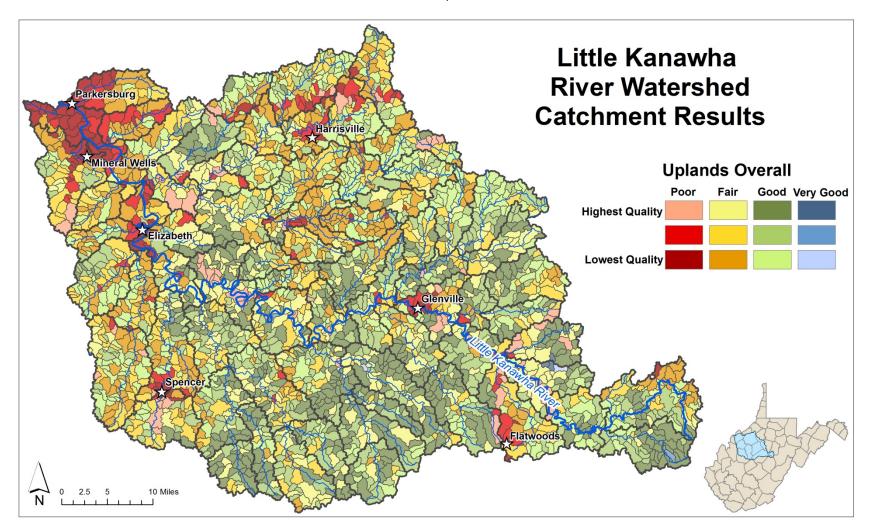


Figure 27b. Uplands Overall Results – Catchment Level

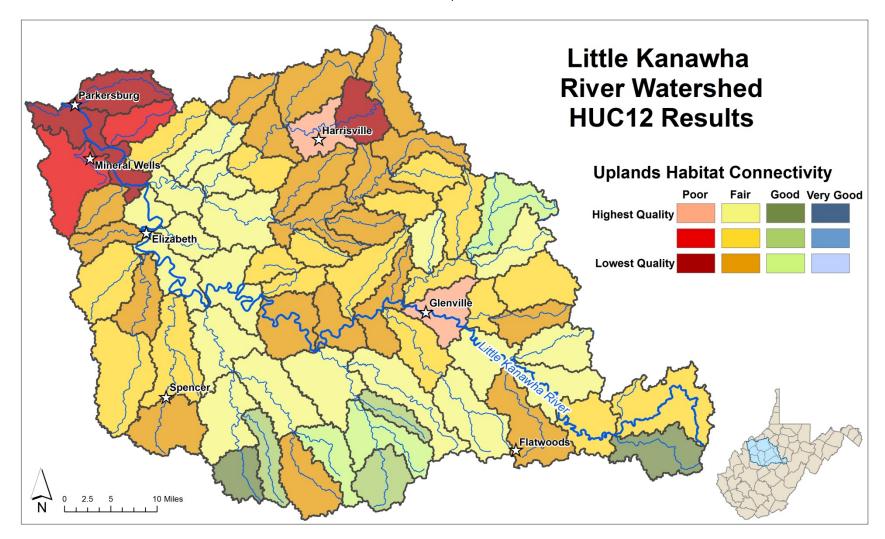


Figure 28a. Uplands Habitat Connectivity Index Results – HUC12 Level

Final Report

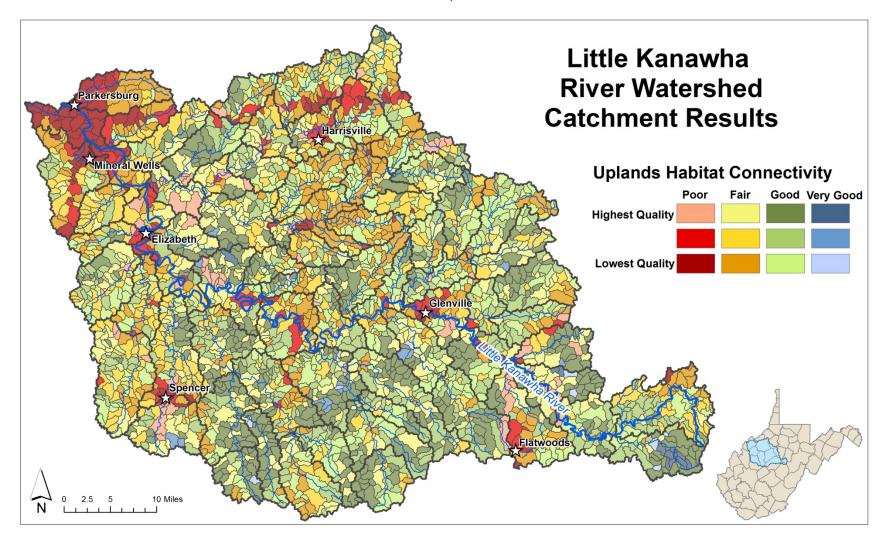


Figure 28b. Uplands Habitat Connectivity Index Results – Catchment Level

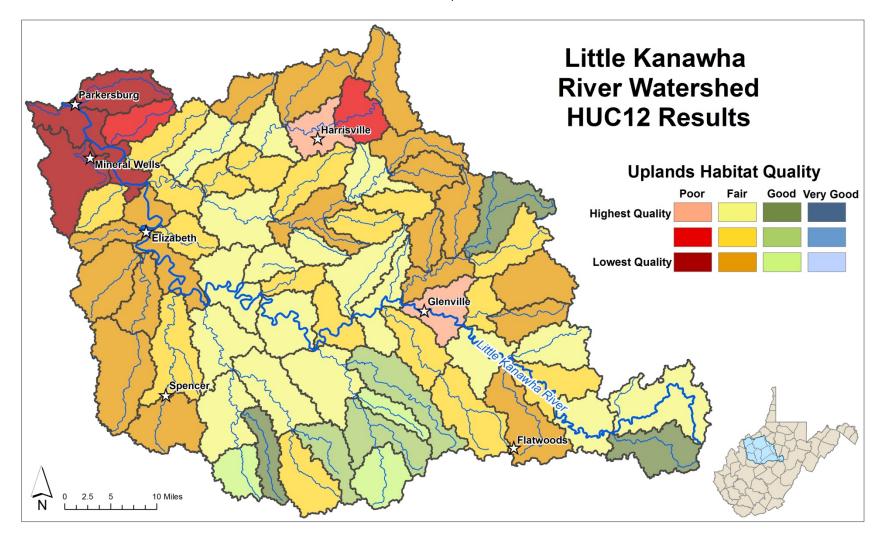


Figure 29a. Uplands Habitat Quality Index Results – HUC12 Level

Final Report

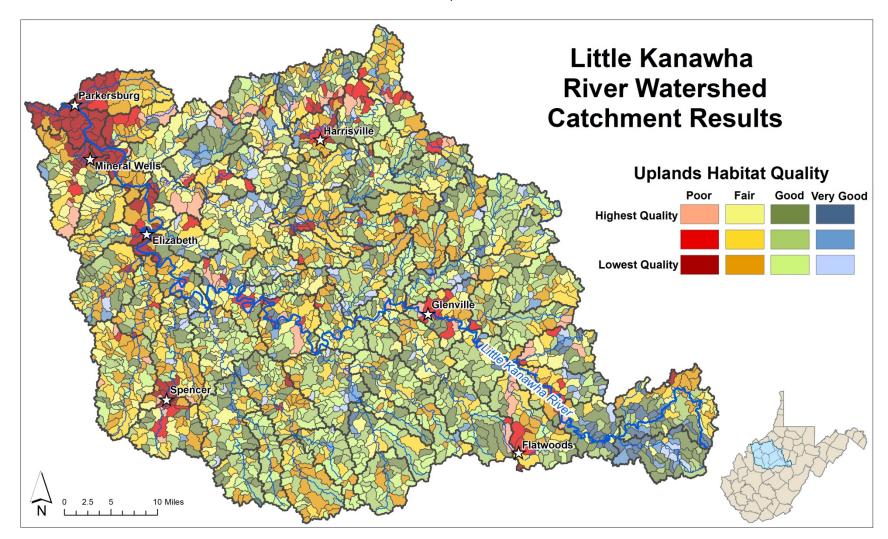


Figure 29b. Uplands Habitat Quality Index Results – Catchment Level

Final Report

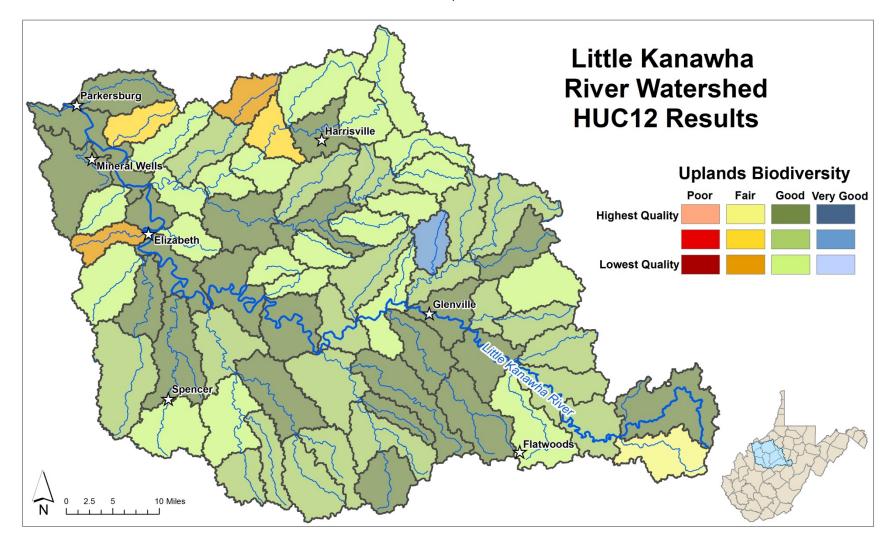


Figure 30a. Uplands Biodiversity Index Results – HUC12 Level

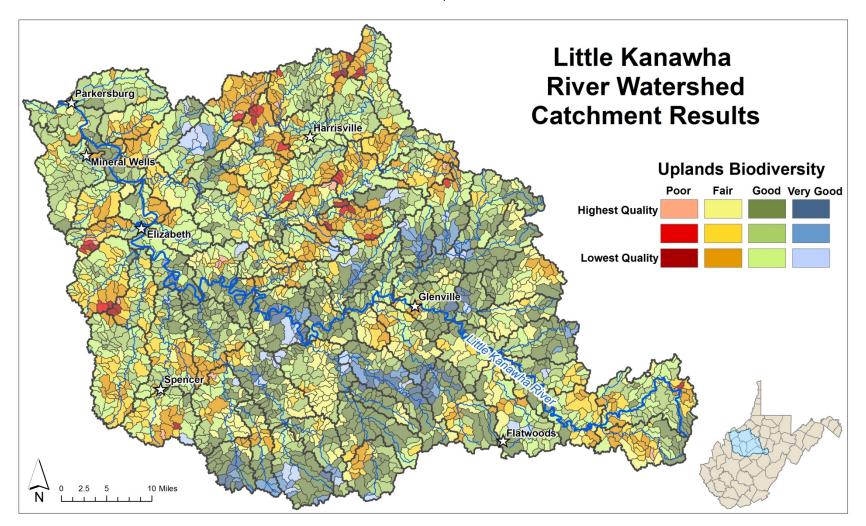


Figure 30b. Uplands Biodiversity Index Results – Catchment Level

Final Report

4.2 Consolidated Analysis Results and Discussion

The Consolidated Analysis Overall results for the Little Kanawha watershed indicate varying levels of future threat dispersed across the watershed (Figure 31). A general east-west trend is apparent across the watershed, with lower threat levels in the west and increased threat levels in the east. This trend may be misleading however, since there is a lack of potential development data for any developed areas of the watershed, including the Parkersburg area.

The Consolidated Analysis Energy results for the Little Kanawha watershed consider only three metrics (due to data limitations or lack of a particular threat, such as mining, in the watershed): potential Marcellus shale gas well development, wind energy development potential, and geothermal potential. All of these threats are highest in the east and decrease toward the west, due to topography and geology (Figure 32). It is likely that the most significant future energy threat is gas well development, which is already a significant industry in this watershed.

The Population and Development index had data available for only one metric, population projections at the county level, and is therefore not very robust. In general, the population projections for counties in the Little Kanawha watershed indicate expected growth only in the far eastern arm, with a projected population decrease by 2030 in all counties except Upshur County (increase of 3.4%) and Ritchie County (no change; Christiadi 2011).

The Climate Change index also had data limitations, with data available only for Resiliency and Regional Flow (surrogates for the predicted effects of climate change on organisms' ability to adapt as a result of climate change). These datasets are from a greater regional analysis conducted by The Nature Conservancy's Eastern Conservation Science division. Resiliency is a measure of landscape complexity and landscape permeability, while Regional Flow data more specifically identifies "larger-scale directional movements and...areas where they are likely to become concentrated, diffused, or rerouted, due to the structure of landscape" (Anderson et al. 2012). More details about the resiliency data can be found in Section 3.1.6 Consolidated Analysis. The Resiliency data has the lowest scores (indicating less resiliency to the impacts of climate change) in the northwest around the Parkersburg urban area, with pockets of high resiliency throughout the watershed and particularly in the southeast (Figure 33). The Regional Flow data shows less pronounced trends, though Parkersburg again had the higher threat scores, and many of the lowest threat areas of the watershed are in areas with the highest Resiliency scores (Figure 34).

The Little Kanawha watershed has approximately 35,500 acres of protected lands (Figure 35), with six Wildlife Management Areas (WMAs), three State Parks, one TNC preserve, one Wetlands Reserve Program (WRP) easement, and one fairly large (~2,100 acres) community park. Several overlapping priority areas occur within the Little Kanawha watershed (Figure 36). The Nature Conservancy has included several major tributaries in their aquatic portfolio and their terrestrial portfolio also highlights different areas of the watershed. Nineteen HUC12s were identified as priorities by the West Virginia Division of Forestry water quality analysis report.

Final Report Little Kanawha River Watershed **Consolidated Analysis Overall Results** Lowest Theat Theat Ν 10 Miles 0 2.5 5

WVWAPP Little Kanawha River Watershed Assessment

Figure 31. Consolidated Analysis Overall Results

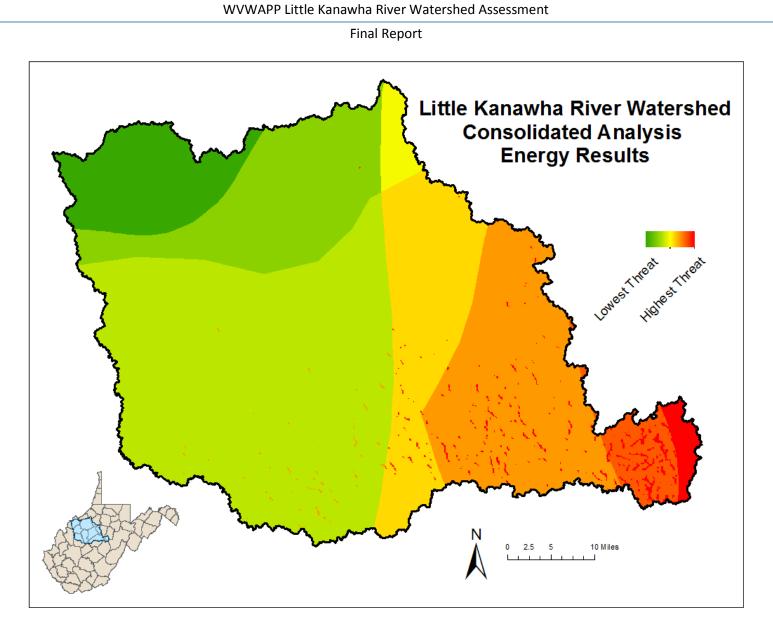


Figure 32. Consolidated Analysis Energy Results

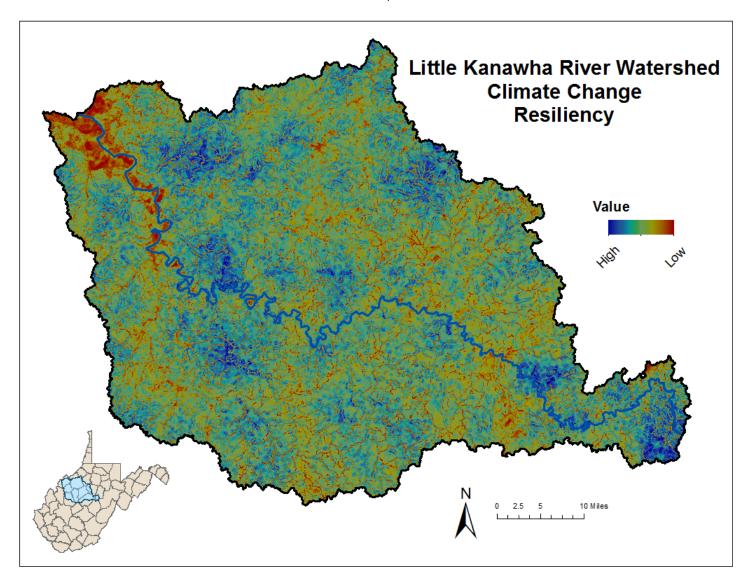


Figure 33. Consolidated Analysis Climate Change – Resiliency (TNC 2012)

Final Report Little Kanawha River Watershed **Climate Change Regional Flow** Value 10 Miles 2.5 5

WVWAPP Little Kanawha River Watershed Assessment

Figure 34. Consolidated Analysis Climate Change – Regional Flow (TNC 2012)

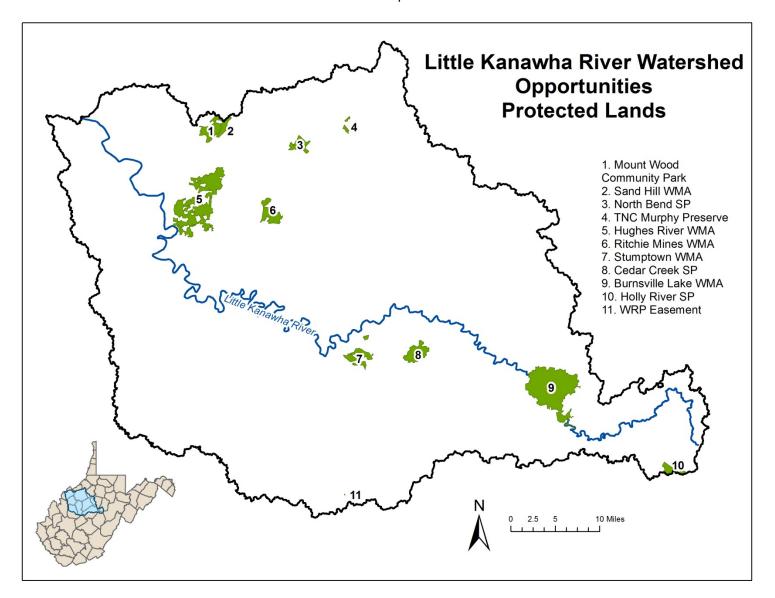


Figure 35. Little Kanawha River Watershed Opportunities – Protected Lands

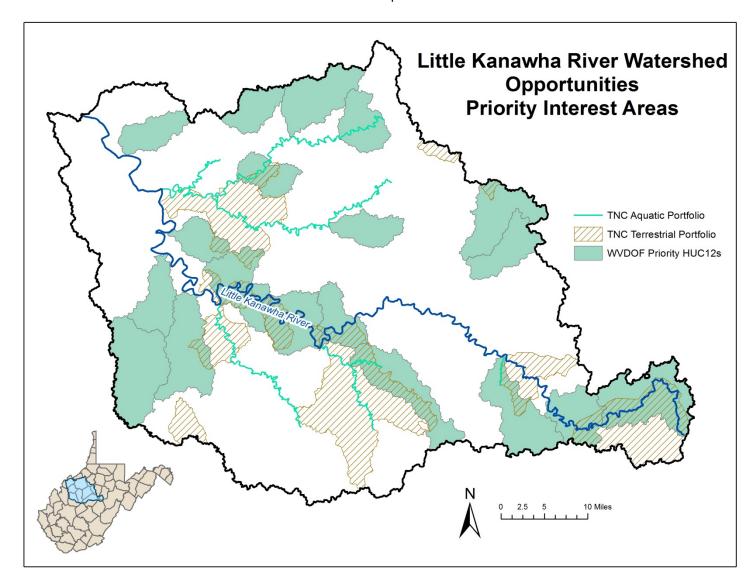


Figure 36. Little Kanawha River Watershed Opportunities – Priority Interest Areas (TNC 2012, WVDOF 2011)

Section 5: Recommendations and Conclusions

5.1 Recommendations for Use

The goal of the watershed assessment pilot project was to be comprehensive and flexible enough to be applicable for a wide variety of potential end uses by regulatory staff, stakeholders, or any interested parties. We recognize that different users will likely have different goals, questions, and uses of the project results in mind. Regulatory staff may target a particular HUC12 watershed or stream reach, or have funds available for a particular strategy (e.g., to use funds targeted specifically for protection or restoration activities). Regulators may also use this information for cumulative impacts analyses to make permitting decisions. A watershed association may be interested in working only on streams, or may have a very specific issue they are interested in addressing within a watershed (e.g., treating acid mine drainage streams, or restoring wetland habitat to promote biodiversity). Alternately, an end user may not have any preconceived ideas of where they would like to work or what type of work they would like to pursue, and may just be interested in perusing the data collected and developing a comprehensive view of the watershed as a whole. And inevitably there will be additional uses and applications of the assessment results that the project team has not foreseen.

Considering the great variety of potential uses, it is necessary to not be too specific or prescriptive in suggesting different strategies on applying the assessment results on the ground or on using the interactive web tool. We have therefore developed two sample procedures for potential uses based on the strategies of protection and restoration. These examples are intended to walk users through a potential process for assessing the results, familiarizing themselves with underlying datasets, and choosing candidate sites for applying potential restoration or protection strategies on the ground.

As there are many decisions and factors involved in deciding where and how to work, the project team highly recommends as the initial step to determine the goals and objectives of a potential project, before approaching the assessment results and data (Figure 37). With the specifics and limitations of their own unique project(s) in mind, users can approach the results and web map in much the same way as the process described in the examples, by viewing and becoming familiar with overall and index results for each landscape model, and then viewing relevant data at whatever scale seems appropriate considering their unique goals.

The project makes some key assumptions: that protection priorities are most likely areas of Good or Very Good quality, possibly adjacent to or near existing public lands; and that restoration priorities are most likely areas with Fair scores, implying that they are in need of human intervention to repair function or restore quality, but are not so impacted by stressors that work in the area seems unfeasible or impractical. Within the results maps, blue areas indicate planning units with scores in the Very Good category, green areas indicate planning units in the Good category, yellow-orange planning units are in the Fair category, and red planning units have scores in the Poor category. Depending on the index, a Fair score may indicate an imbalance between quality metrics and anthropogenic stressors. A Fair planning unit may be of poor quality, but also have relatively few stressors, implying that restoration of the area may greatly benefit its overall quality and potentially changes its score from Fair to Good. Conversely, a Fair planning unit may have very high quality metrics, but also a high number of

96

anthropogenic stressors, indicating that strategies designed to counteract the effects of the stressors may successfully increase the score from Fair to Good or even Very Good.

However, it is important to note that these are only a few of the possible uses for the project results. It is possible that the priorities and goals of different end users will suggest a different protection or restoration threshold to focus on.

Suggested process for using the results of the pilot project to determine project strategies:

Step 1: Define Project goals and objectives:

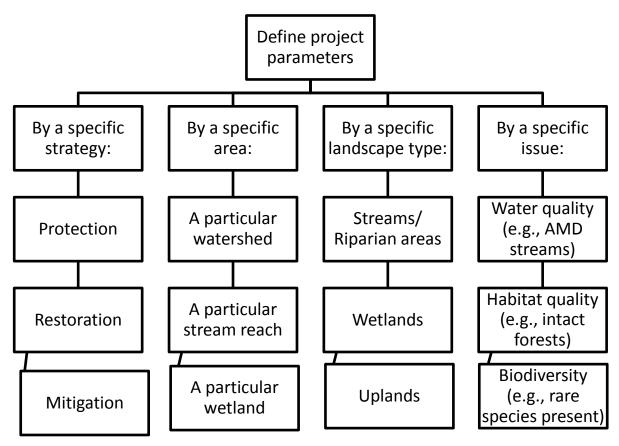


Figure 37. Possible End User Project Parameters

Step 2: Identify candidate areas for conservation action:

- a) Protection Sample Process (Figure 38)
 - 1) Select a Priority Model (Streams, Wetlands, or Uplands) according to specific project goals, and examine model's overall condition results for highest scoring HUC12s (green blue areas)
 - 2) Choose several candidate HUC12s with high scores (green blue) in index or indices of interest
 - a. Example: A HUC12 with high Streams Water Quality and/or Riparian Habitat ranking
 - b. Example: A HUC12 with a high Wetlands Hydrology ranking, indicating extensive wetlands
 - c. Example: A HUC12 with a high Uplands Habitat Connectivity ranking, indicating a low level of fragmentation
 - 3) If applicable, display the Opportunities layer and select HUC12s in proximity to protected lands or priority interest areas to evaluate the potential for collaboration with other agencies
 - 4) If applicable, display the Future Threats layer to evaluate each candidate HUC12's potential for future energy development, population projections, and resiliency to climate change
 - 5) Zoom to each candidate HUC12, display catchment level index results, select those with high scores (green-blue areas) in multiple indices
 - a. Example: For Streams catchments, consult the Water Quality, Riparian Habitat, and/or Biodiversity indices
 - b. Example: For Wetlands catchments, consult the Wetlands Hydrology and Wetland Habitat indices
 - c. Example: For Uplands catchments, consult the Habitat Connectivity and Habitat Quality indices
 - 6) Zoom to candidate catchment(s) and display relevant data layers (imagery, land use, roads, resource extraction, etc.) to evaluate individual factors and datasets that may have contributed to a particular index score
 - a. Example: For a high-ranking Streams catchment, display impervious surface, roads, NPDES outlets, mining, and wells to indicate potential water quality threats in the area
 - b. Example: For a high-ranking Wetlands catchment, display any nearby WAB station data to indicate water quality of contributing streams
 - c. Example: For a high-ranking Uplands catchment, display the land use data layers and aerial imagery
 - 7) Determine parcel ownership and conduct site visit(s) to evaluate on-the-ground conditions and formulate specific strategies and action steps

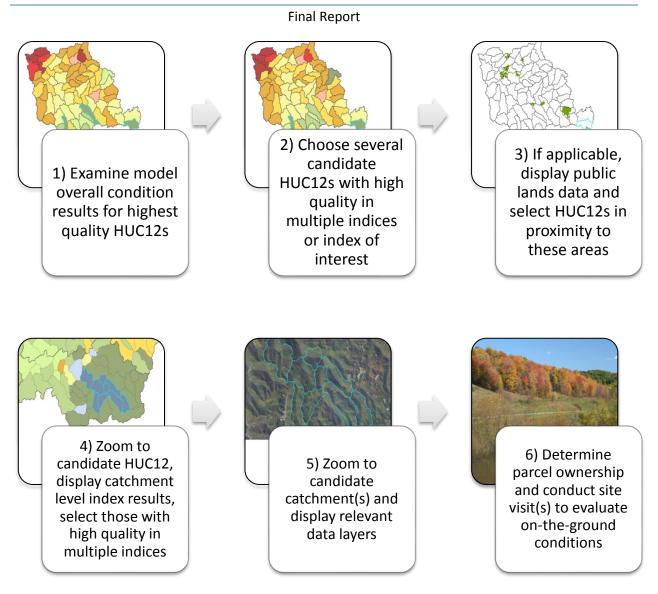


Figure 38. Protection Sample Process Flowchart

- **b)** Restoration Sample Process (Figure 39)
 - Select a Priority Model (Streams, Wetlands, or Uplands) according to specific project goals, and examine model's overall condition results for Fair-scoring HUC12s (yellow-orange areas); or, if desired, select Poor-scoring HUC12s (red areas)
 - 2) Choose several candidate HUC12s with Fair or Poor scores in index or indices of interest
 - a. Example: A HUC12 with Fair or Poor Streams Water Quality
 - b. Example: A HUC12 with Fair or Poor Wetlands Wetland Habitat
 - c. Example: A HUC12 with Fair or Poor Uplands Habitat Connectivity
 - 3) Compare to other index results. It may be advisable to select a candidate HUC12 with Good or Very Good scores (green-blue) in additional indices, depending on specific project goals
 - a. Example: A HUC12 with Fair or Poor Streams Water Quality and Good or Very Good Riparian Habitat rankings, such as an AMD stream that could be chemically treated.
 - b. Example: A HUC12 with Fair or Poor Wetlands Water Quality and Good or Very Good Wetlands Hydrology rankings, such as a wetland that could be expanded or revegetated
 - c. Example: A HUC12 with Fair or Poor Uplands Habitat Connectivity and Good or Very Good Uplands Habitat Quality rankings, such as a grazed area that could be reforested
 - 4) If applicable, display the Opportunities layer and select HUC12s in proximity to protected lands or priority interest areas to evaluate the potential for collaboration with other agencies
 - 5) If applicable, display the Future Threats layer to evaluate each candidate HUC12's potential for future energy development, population projections, and resiliency to climate change
 - 6) Zoom to each candidate HUC12, display catchment level index results, select those with Fair or Poor scores (yellow-red) in index of interest and Good or Very Good (green-blue) in additional applicable indices as in steps 2 and 3
 - 7) Zoom to candidate catchment(s) and display relevant data layers (imagery, land use, roads, resource extraction, water quality impairments, wetlands, etc.) to evaluate individual factors and datasets that may have contributed to a particular index score
 - a. Example: For Streams catchments, display nearby WAB station results to evaluate specific stream conditions, and land use/land cover and aerial imagery to visualize riparian habitat
 - b. Example: For Wetlands catchments, display aerial imagery to determine if the wetland still exists, and hydric soils and floodplain layers to determine possible extent for wetland expansion/construction
 - c. Example: For Uplands catchments, display roads, energy transmission lines and wells to locate permanent forest fragmenting features
 - 8) Determine parcel ownership and conduct site visit(s) to evaluate on-the- ground conditions and formulate specific strategies and action steps
 - a. Example: Restore natural vegetation along stream banks, improve streambed structure, restrict stream bank access, and/or treat chemical imbalances
 - b. Example: Create/expand wetland basin structure, address quality issues of contributing streams, restrict access, and/or restore native vegetation
 - c. Example: Restore native vegetation to upland forests and/or remove invasive species

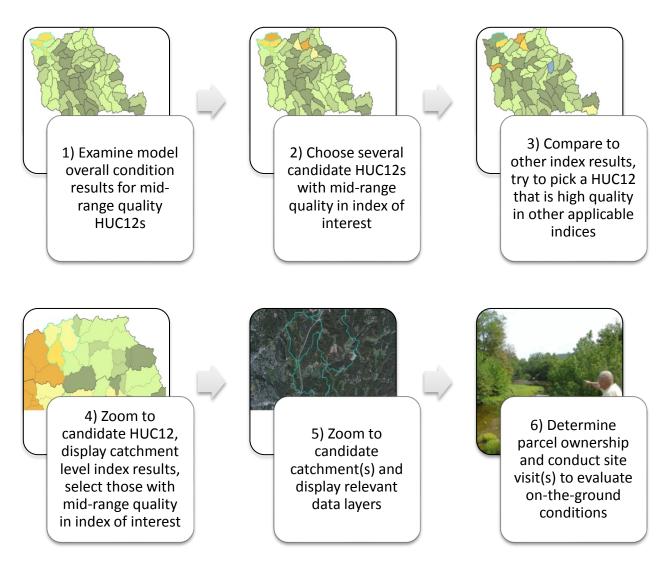


Figure 39. Restoration Sample Process Flowchart

5.2 Potential Strategies

As with the recommendations for use of the model results and selection of project sites, when suggesting potential strategies to address observed trends in selected project sites it is necessary to be aware of potential users' many different project goals and missions. The project team has therefore defined a set of broad potential strategies for various observed trends that are outlined in the results section. The user is encouraged to modify these strategies as appropriate for their particular project.

5.2.1 Streams/Riparian Areas

For Streams Water Quality results, observed trends that lowered index scores can be grouped into mining-related water quality impairments (AMD, pH, and heavy metals impairments, high specific conductivity values, low GLIMPSS scores), development (inadequate sewage treatment, high impervious surface, etc.), and riparian habitat stresses (grazing in riparian areas, high road/railroad densities, etc., which result in high fecal coliform and sedimentation issues). Potential strategies to address mining impacts may include treating and disposing of contaminated water appropriately before it leaves the mine site, controlling runoff and sedimentation from active mine sites, installing settling ponds to allow contaminants to settle out before reaching impacted streams, and installing lime treatment stations. Treatment for issues such as acid mine drainage requires a long-term investment of time, money, and equipment, and may be beyond some stakeholders' capabilities. Watershed associations may apply for funds through the Abandoned Mine Lands program for remediation of sites that were established before the Surface Mine Control and Reclamation Act (SMCRA) went into effect. In areas with inadequate septic systems, two potential strategies are to encourage installation/appropriate maintenance of functioning septic systems, and expansion of sewage treatment service areas. Urban areas also contribute to impaired water quality through runoff due to high imperviousness. A number of urban planning educational programs are available for interested parties to learn about how to minimize effects of impervious surfaces. Disturbance in riparian areas can be addressed by installing buffer areas along streams where activities such as grazing, timber harvesting, or road and railroad construction are limited, and adherence to Best Management Practices (BMPs) for any activities that do occur in riparian areas. Federal programs exist through the NRCS and Conservation Reserve Program (CRP) to assist private landowners with protecting watercourses from livestock.

Streams Water Quantity results indicated that index scores were often lowered by underground and active surface mining and high imperviousness. This index was dependent on surrogate measurements of flows altered from natural conditions, as no direct measurements were available to reliably rank individual planning units. Potential strategies include maintaining maximum natural cover in affected catchments to minimize imperviousness. High imperviousness in urban areas not only contributes to water quality impairments as noted above, but also alters natural flow conditions. Strategies designed to minimize effects of imperviousness on water quality will also help mitigate for any effects on water quantity. Mining effects on water quantity can be minimized by adhering to BMPs in actively mined areas, minimizing impervious surfaces in mined areas, controlling runoff and sedimentation from active mine sites, and controlling releases of mine pool water from underground surface mines.

Streams Hydrologic Connectivity issues included a lack of forested riparian area (which may impede the movement of organisms throughout the length of a stream due to temperature changes, potentially limiting their ability to complete their life cycles), and direct flow impediments such as bridges and culverts. Riparian areas that are lacking forested cover are prime candidates for forest restoration and installation of riparian buffers to minimize fragmenting activities along the stream. Culverts are often incorrectly installed and impede stream flow, and bridges can be impediments to organism movement and stream flow if not installed and maintained properly. Potential strategies would be to install and maintain appropriate culverts and bridges where they have been found to be negatively affecting stream flow and/or organism movement.

Streams Biodiversity index trends observed included invasive plants and lack of mussel streams identified in lower-scoring planning units. Strategies may include restoration of impacted areas by removing invasive species. Potential strategies to increase the mussel score of a planning unit may include direct relocation of mussels to an area, maintenance of an adequate flow regime where low flow conditions have impacted mussel populations, and improvement of water quality in potential mussel streams. Rare species data are hampered by the absence of information about where species were sampled but no rare species found versus where species were not sampled. Results in this index should therefore be regarded with caution and only used to design strategies in conjunction with other index results.

For the Streams Riparian Habitat index, results indicated that factors negatively affecting planning units' scores included a lack of natural cover in the riparian area and the presence of fragmenting features such as impervious surface, roads and railroads, oil and gas wells, and active surface mining. Trends also included low RBP scores (which may indicate problems with the stream bank itself). Potential strategies to address these issues include restoration of natural cover in riparian areas (including invasive species removal), and establishment of buffers in riparian areas designed to minimize fragmenting features by restricting incompatible activities. Any development that does occur in riparian areas should adhere to BMPs to minimize adverse effects from these activities. Areas with low overall RBP and bank stability scores may benefit from stream bank restoration, such as creating woody and vegetative riparian buffers and building bankfull benches, and other restoration activities depending on particular issues identified by the RBP assessment.

5.2.2 Wetlands

For the Wetlands Water Quality index, observed trends included a lack of forested headwater wetlands, presence of stressors in the wetland catchment area (including high impervious surface and low natural cover), and incompatible land uses in the wetland buffer (including fragmenting features and grazing). A lack of forested wetlands can be addressed by restoration of forested wetlands in headwater areas of the watershed. Restoration of natural cover in the wetland catchment area may mitigate for high impervious cover. In wetland catchments that include urban areas, urban planning programs mentioned above for streams water quality are also potential strategies for this index. Construction of additional impervious surfaces in impacted wetland catchments should be avoided. Incompatible land uses in wetland buffers may be minimized by adhering to BMPs on any construction

activities in buffer areas, fencing out livestock from wetland buffers, and assigning appropriate permitted discharges to NPDES outlets.

Observed trends for the Wetlands Hydrology index included small or no wetlands in planning units and a lack of floodplain area and hydric soils. A potential issue for this index is inconsistent soil mapping among different counties. Some counties did not map hydric soils to the same extent as neighboring counties did, resulting in a likely bias in the index results. One potential strategy to improve index results in the future is to implement a statewide project to consistently map hydric soils; work is currently in progress across the state updating soils maps in certain counties. Any planning units with hydric soils but no wetlands, or without existing floodplain areas, are potential candidates for wetland restoration.

Wetlands Wetland Habitat index results indicated that small forest patch sizes, low natural cover, and roads in wetland buffers were stressors in some areas. Potential strategies to address these issues include restoration of unfragmented forest areas that extend into wetland buffers, and restoration of natural cover in wetland buffers. Landowners may be able to take advantage of federal or state programs for wetland protection or conservation easements, such as the Wetland Reserve Program (WRP). Roads in wetland buffers should be minimized, and any road construction or maintenance projects should adhere to accepted BMPs to minimize any adverse impacts on wetlands.

For a discussion of Wetlands Biodiversity index, please see discussion of the corresponding index under Streams above.

5.2.3 Uplands

Uplands Habitat Connectivity results indicated that fragmentation was the main trend across planning units (small unfragmented forest blocks and presence of fragmenting features such as transmission lines, pipelines, roads, railroads, timber harvesting, oil and gas wells, active surface mining, and development). One key potential strategy would be to utilize this watershed assessment as a tool to identify less fragmented areas within the watersheds; then utilize direct corporate, regulatory, and/or stakeholder/public engagement to avoid, minimize, or mitigate fragmenting effects to these areas through appropriate siting of infrastructure, development, and application of BMPs, retiring and restoring infrastructure no longer needed, and protection of irreplaceable sites.

Observed trends for Uplands Habitat Quality included low natural cover in upland areas, low heterogeneity, and incompatible land uses such as timber harvesting and grazing. Potential strategies include restoration of natural cover in affected areas and establishing compatible grazing regimes in areas affected by livestock grazing. Logging BMPs should be adhered to in all instances, and timber companies should be encouraged to utilize the Forest Reclamation Approach (FRA) of cultivating multi-species stands of hardwoods instead of managing for only one species.

For a discussion of the Uplands Biodiversity index, please see discussion of the corresponding index under Streams above.

5.3 Data Needed and Next Steps

An objective of this pilot project was to identify data gaps and needs in West Virginia: datasets that would be useful to include in the analysis to improve the models developed, but that were not available to include in the assessment. These include:

- Updated NWI wetlands data such as NWIPlus. At this writing, the WVDNR is in the process of ground-truthing NWI wetlands. This dataset will be incorporated once available.
- Reference wetlands or wetlands analyzed for function.
- More information on rare species sampling; i.e., information on areas that were sampled and no rare species were found.
- More comprehensive rare species sampling, especially in upland areas.
- Common plant and animal species diversity data.
- Forest Inventory Analysis data that can be accessed for GIS analysis at planning unit scales, i.e., locations that are not blurred, along with type and extent of harvest.
- More randomly sampled water quality data, particularly reference index values.
- Additional long-term USGS stream gauge data.
- Current and projected Marcellus and Utica shale gas well development, including sources and quantity of water use.
- Data on underground mine discharge points, and mine pools locations, extent, and water quality.
- Updated status information on wells, e.g., inactive vs. plugged, Marcellus well status.
- Soils data that are consistently mapped and coded across county boundaries.

The consolidated analysis of future impacts for the five pilot HUC8 watersheds was hampered by lack of data on population and development projections (except for the Morgantown metropolitan area), incomplete coal mapping, and uncertainty in the direction and degree of Marcellus shale development, but projected declines in population in some counties and likely stagnation in development may slow any development-related declines in water and habitat quality. Since a consolidated analysis was one of the original goals of this project, the methods will continue to be refined as more data become available and more assessments inform our understanding of the influence of different metrics on index results. As more sophisticated climate projections become available, such as a predictive model for the Ohio River Basin currently being developed by the USACE (Drum 2013), they may be incorporated into the analysis to indicate areas that are especially vulnerable to temperature and precipitation changes and where landscape resilience is especially important.

This watershed assessment combines several features that make it unique:

- It addresses watershed condition not only in terms of species and habitat, but also in terms of functions, such as water purification, sediment retention, and flood storage.
- It allows for quantitative assessment at two spatial scales: the HUC12 scale, which is of interest to state agencies for regulatory purposes, and the NHDPlus catchment scale, which is more useful for site-specific conservation planning.

- It performs an in-depth analysis of three landscapes— streams, wetlands, and uplands yet recognizes that they are not independent, but mutually influence condition and function; in particular it quantifies the contribution of upland habitat to stream and wetland function by incorporating both aquatic and terrestrial metrics in these models.
- It aggregates a wide variety of disparate spatial datasets from many sources, such as land use, water quality, and resource extraction, in one location.
- The assessment methods are transferable to all HUC8 watersheds across the state.

The West Virginia Watershed Assessment Pilot Project recognizes that conservation actions are not uniform: protection, restoration, and mitigation projects are undertaken by a variety of entities with a variety of goals and resources. It provides a tool and a framework for users to obtain information about a watershed and use the assessment analysis to inform their decisions or create their own strategies appropriate to their needs. The development and improvement of the interactive web map will be ongoing, with the goal of making the data as dynamic and the assessment procedure as automatic as possible. Potential users have expressed interest in predictive aspects of the tool and the desire for functionality that allows users to create "what-if" scenarios to evaluate the effects of conservation actions. When the web tool becomes available, continued involvement by users and experts throughout the development process may result in further efforts to develop this functionality.

References

Anderson M. G. and C. E. Feree. 2010. Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity. PLoS ONE 5(7): e11554. doi:10.1371/journal.pone.0011554

Anderson, M.G., M. Clark, and A. Olivero Sheldon. 2012. Resilient sites for terrestrial conservation in the northeast and mid-Atlantic region. The Nature Conservancy, Eastern Conservation Science, Boston, MA. <u>http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/terrestrial/resilience/Pages/default.aspx</u>

Anderson, M. G., S. Bernstein, F. Lowenstein, N. Smith, and S. Pickering. 2004. Determining the size of eastern forest reserves. The Nature Conservancy, Eastern Conservation Science Program, and Sweetwater Trust.

Bailey, R. G. 1995. Description of the Ecoregions of the United States (2nd ed.). Misc. Pub. No. 1391, Map scale 1:7,500,000. USDA Forest Service.

Bonar, R. G. 2012. The West Virginia Encyclopedia: Calhoun County. <u>http://www.wvencyclopedia.org/articles/809</u>. West Virginia Humanities Council. Accessed 23 May 2013.

Christiadi. 2011. Population Projection for West Virginia Counties. Bureau of Business and Econommic Research, College of Business and Economics, West Virginia University, Morgantown, WV.

Compton, B. W., K. McGarigal, S. A. Cushman, and L. R. Gamble. 2007. A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conservation Biology 21, 788-799.

Drum, G. 2013. Personal communication (expert workshop held 8-9 January 2013, regarding the USACE Institute of Water Resources Ohio River Basin Climate Change model for temperature and precipitation [in progress]).

Foundations of Success. 2009. Conceptualizing and planning conservation programs: a training manual. Foundations of Success, Bethesda, USA. November 2009.

Gawler, S. C. 2008. Northeastern Terrestrial Wildlife Habitat Classification. Report to the Virginia Department of Game and Inland Fisheries on behalf of the Northeast Association of Fish and Wildlife Agencies and the National Fish and Wildlife Foundation. NatureServe, Boston, USA.

Gilchrist-Stalnaker, J. G. 2010. The West Virginia Encyclopedia: Little Kanawha River. <u>http://www.wvencyclopedia.org/articles/1422</u>. West Virginia Humanities Council. Accessed 23 May 2013.

Hendricks, R. F. 2010. The West Virginia Encyclopedia:

Parkersburg. <u>http://www.wvencyclopedia.org/articles/1811</u>. West Virginia Humanities Council. Accessed 23 May 2013.

Keys, J. E., Jr., C. A. Carpenter, S. L. Hooks, F. G. Koenig, W. H. McNab, W. E. Russell and M. L. Smith. 1995. Ecological units of the eastern United States - first approximation (map and booklet of map unit tables). Presentation scale 1:3,500,000, colored. USDA Forest Service, Atlanta, USA.

Maxwell, A. E., M. P. Strager and C. B. Yuill. 2011. WV land use and cover mapping using Landsat 2009-2010 imagery. Natural Resource Analysis Center, Division of Resource Management, West Virginia University, Morgantown, USA.

Messinger, T. and C.A. Hughes. 2000. Environmental setting and its relation to water quality in the Kanawha River basin. Water Resources Investigations Report 00-4020, National Water Quality Assessment Program, US Geological Survey, Charleston, West Virginia.

Messinger, T. 2012. Personal communication (email received 14 June 2012, regarding West Virginia USGS Stream gage coverage).

NatureServe 2012. NatureServe conservation

status. http://www.natureserve.org/explorer/ranking.htm#natsub. Accessed 29 April 2012.

Natural Resources Conservation Service [NRCS]. 2009. Watershed boundary dataset (8, 10, and 12 digits). [shapefile]. Map scale 1:24,000. From WVGIS Technical Center [WVGISTC] and Natural Resources Conservation Service [NRCS].

Natural Resources Conservation Service [NRCS]. 2012. Watershed Boundary Dataset (WBD) facts. Natural Resources Conservation

Service www.ncgc.nrcs.usda.gov/products/datasets/watershed/facts.html. Accessed April 26, 2012.

Omernik, J. M., D. D. Brown, C. W. Kiilsgaard and S. M. Pierson. 1992. (Map) Draft ecoregions and subregions of the Blue Ridge Mountains, Central Appalachian Ridges and Valleys, and Central Appalachians of EPA Region 3. United States Environmental Protection Agency.

Pond, G.J., J.E. Bailey, B.M. Lowman and M.J.Whitman. 2012. Calibration and validation of a regionally and seasonally stratified macroinvertebrate index for West Virginia wadeable streams. Environmental Monitoring and Assessment 185: 1515-1540.

Pepper, B. 1973. Volcano: Twilight of a boom town. Charleston Gazette-Mail, June 3, 1973.

Scott, J. M., F. Davis, B. Csuti, R. Noss, B. Butterfield, C. Groves, H. Anderson, S. Caicco, F. D'Erchia, T. C. Edwards, J. Ulliman and R. G. Wright. 1993. Gap Analysis: A geographic approach to the protection of biological diversity. Wildlife Monographs 123: 3-41.

Smith, M.P., R. Schiff, A. Olivero and J. MacBroom. 2008. The Active River Area: A conservation framework for protecting rivers and streams. The Nature Conservancy Eastern U.S. Freshwater Program, Boston, USA.

Stauffer, J. R., J. M. Boltz and L. R. White. 1995. The fishes of West Virginia. Academy of Natural Sciences of Philadelphia. Philadelphia, USA.

TetraTech, Inc. 2008. Total maximum daily loads for selected streams in the Little Kanawha River Watershed, West Virginia. Water Resources and TMDL Center. Prepared for the West Virginia Department of Environmental Protection. Charleston, West Virginia.

The Nature Conservancy [TNC]. 2009. TNC ecoregions [shapefile]. Map scale 1:7,500,000. The Nature Conservancy, 19 December 2009. For further information

see: http://www.natureserve.org/explorer/eodist.htm#ecoregions.

The Nature Conservancy [TNC]. 2011a. DRAFT res_elvlf_rk [raster]. The Nature Conservancy Eastern Resource Office [ERO] and Pennsylvania Field Office [PAFO]. March 2011, downloaded 3 March 2011.

The Nature Conservancy [TNC]. 2011b. Secondary data quality assurance project plan (QAPP) for the West Virginia watershed assessment pilot project. Report prepared for the West Virginia Department of Environmental Protection.

The Nature Conservancy [TNC]. 2011c. Syst_NE_110714 [raster]. Map scale 1:24,000 – 1:100,000. The Nature Conservancy Eastern Conservation Science, 2011; NatureServe (www.natureserve.org), and the Natural Heritage Programs in the 13 states of the Northeast; U. S. Geological Survey; U.S. Environmental Protection Agency; Geological Surveys of the 13 Northeastern states; U.S. Forest Service; WorldClim Global Climate Data (www.worldclim.org). 14 July, 2011.

Thoenen, E. D. 1964. History of the Oil and Gas Industry in West Virginia. Education Foundation, Inc. Charleston, West Virginia, USA.

U.S. Department of Agriculture/Natural Resources Conservation Service [USDA/NRCS], National Geospatial Management Center. 2006a. Processed annual average temperature, 1971-2000. [shapefile]. Data generated by the PRISM Group, Oregon State University; downloaded from USDA Data Gateway 10 May, 2010.

U.S. Department of Agriculture/Natural Resources Conservation Service [USDA/NRCS], National Geospatial Management Center. 2006b. Processed annual average precipitation, 1971-2000. [shapefile]. Data generated by the PRISM Group, Oregon State University; downloaded from USDA Data Gateway 10 May, 2010.

U.S. Environmental Protection Agency [USEPA]. 2002. Primary distinguishing characteristics of

Level III Ecoregions of the continental United

States. <u>http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm</u>. Accessed April 2012.

U. S. Environmental Protection Agency [USEPA] and U.S. Geological Survey [USGS]. 2005. National Hydrography Dataset Plus – NHDPlus, Edition 1.0.

U. S. Environmental Protection Agency [USEPA]. 2011. Level IV ecoregions of the conterminous United States. [map] Map scale 1:250,000. US EPA Western Ecology Division.

http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm#Level IV. Accessed 17 April, 2012.

U.S. Fish & Wildlife Service [USFWS]. 2010. CONUS_wet_poly [shapefile]. Map scale 1:24,000 and 1:25,000. National Wetlands Inventory. 1 October, 2010.

U.S. Forest Service [USFS]. 2006. Percent of BA loss (CONUS). [raster]. 2006 National Insect and Disease Risk Map Project. USDA Forest Service , Forest Health Technology Enterprise Team, 31 October 2007.

U. S. Geological Survey [USGS]. 2002. Assessment of undiscovered oil and gas resources of the Appalachian Basin Province.

U.S. Geological Survey [USGS]. 2005. County Boundaries (1:24,000 scale) [shapefile]. USGS Digital Raster Graphics. Digitized by WVDEP January 2002, attributes updated March 2005. From WVGIS Technical Center.

U.S. Geological Survey [USGS]. 2009. Federal guidelines, requirements, and procedures for the national Watershed Boundary Dataset: U.S. Geological Survey Techniques and Methods 11–A3. U.S. Geological Survey and U.S. Department of Agriculture, Natural Resources Conservation Service.

U.S. Geological Survey [USGS]. 2011. Hydrography [vector digital dataset]. National Hydrography Dataset. U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency. Downloaded June 2011.

U.S. Geological Survey [USGS]. 2013. Nonindigenous Aquatic Species Database. Gainesville, Florida. Accessed 14 June 2013.

West Virginia Department of Environmental Protection [WVDEP]. 1996. minesAbandonedLandsPolygon_WVDEP_1996 [shapefile]. Abandoned mine lands boundaries. Downloaded from West Virginia GIS Technical Center [WVGISTC].

West Virginia Department of Environmental Protection [WVDEP]. 2002. sewerTreatmentPlants_WVDEP_200203_utm83 [shapefile]. Wastewater treatment plants. Downloaded from West Virginia GIS Technical Center 18 May 2011.

West Virginia Department of Environmental Protection [WVDEP]. 2010. West Virginia integrated water quality monitoring and assessment report 2010.

West Virginia Department of Environmental Protection [WVDEP]. 2011a. 2010 LQU Facility_Location_Avg_UseType [Excel file]. Large quantity water users. Received from WVDEP 31 August 2011.

West Virginia Department of Environmental Protection [WVDEP]. 2011b. vallf and refuse_structures [shapefiles]. Excess Spoil (Valley) Fills and Coal Refuse Fills. Received from WVDEP 24 August 2011.

West Virginia Department of Environmental Protection [WVDEP]. 2012. Wells_Merge_20101109 [shapefile]. Received from WVDEP 1 May, 2012.

West Virginia Department of Environmental Protection [WVDEP]. 2013. Watershed Assessment Branch 2013 Standard Operating Procedures. Division of Water and Waste Management, Watershed Assessment Branch, Charleston, WV.

West Virginia Department of Health and Human Resources [WVDHHR]. 2011. TNC_Watersources_2011_08_30 [shapefile]. Public water supply intakes and wells. Received from WVDHHR 31 August 2011.

West Virginia Division of Agriculture [WVDA]. 2011. West Virginia invasive species data. Personal communication.

West Virginia Division of Natural Resources [WVDNR]. 2005. It's about habitat. . . West Virginia wildlife conservation action plan.

West Virginia Geological and Economic Survey [WVGES]. 2010. Mining_Underground [shapefile]. Underground coal mining extent in West Virginia. Downloaded from WVGES interactive map 17 February 2011.

West Virginia Geological and Economic Survey [WVGES]. 2012a. Interactive Coal Maps. <u>http://www.wvgs.wvnet.edu/www/coal/cbmp/coalimsframe.html</u>. Accessed 15 June, 2012.

West Virginia Geological and Economic Survey [WVGES]. 2012b. Marcellus Shale in West Virginia. <u>http://www.wvgs.wvnet.edu/www/datastat/Marcellus/Downloads/Marcellus_PageSized_2012</u> -02-29_8_5x11.pdf. Accessed 15 June, 2012.

West Virginia Geological and Economic Survey (WVGES). 2013. History of WV Mineral Industries – Oil and Gas. http://www.wvgs.wvnet.edu/www/geology/geoldvog.htm. Accessed 4/30/2013.

West Virginia GIS Technical Center [WVGISTC] and Federal Emergency Management Agency [FEMA]. 2008. Statewide 100-year floodplain polygons for West Virginia. [shapefile] Map scale 1:24,000. West Virginia GIS Technical Center, 23 July 2008.

West Virginia University [WVU]. 2012. WVU Facts. <u>http://about.wvu.edu/facts</u> . Accessed 19 June 2012.

Whitman, M. 2013. Personal communication (conversation during stakeholder workshop held 8 May 2013, regarding water quality sampling in Little Kanawha watershed).

Woods, A. J., J. M. Omernik and D. D. Brown. 1999. Level III and IV ecoregions of Delaware, Pennsylvania, Virginia, and West Virginia. USEPA

at <u>http://training.fws.gov/EC/Resources/stream_habitat_measurement_tech/epa_region_3_eco_desc.p</u> <u>df</u>. Accessed 16 April 2012.

APPENDICES

Appendix A: Detailed Data Source Information

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
BASE LAYERS							
NHDPlus (100K)	Catchments, flowline, flow direction grid	polygon, line, raster	USGS (2005)	5/2011	Planning unit delineation, base stream network, wetland distance to nearest surface water	100K (not consistent scale among various stream datasets)	Moderate
NHD24K with stream codes	Flowlines with additional attributes including DEP stream code	line shp	WVU Natural Resource Analysis Center (2010)	11/2010	Join with mussel stream survey data Excel file		None
Land Use/Land Cover 2009-2010	WV land use/land cover data; updated using Landsat 5 imagery	raster	WVU Natural Resource Analysis Center	11/14/2011	Recent land cover dataset, to determine percent forested, developed, mining, etc	Not all roads included as developed land	None
City boundaries	Outline of city boundaries	polygon	US Census (1990)	5/2010	Spatial reference		None
County boundaries	Outline of county boundaries	polygon	USGS/WVDEP (2002)	2/2010	Spatial reference		None
Ecoregions	TNC defined ecoregions	polygon	TNC - ERO (2008)	2/2010	Join with ecoregional targets Excel file		None
Ecological Land Units	TNC defined ecological land units	polygon	TNC-ERO(2008)	2/2010	Determine calcareous bedrock; predict rare species occurrence based on landscape and geology		None
Topographic maps	Relief maps of WV, by quad	image	USGS (varies)	Varies	Spatial reference, data verification, mining	Dated (mostly from 1970's)	None
Aerial imagery	Satellite imagery of WV	image	USDA (2007, 2009); ESRI online imagery (2009, 2010)	Online access; 6/2010	Spatial reference, data verification		None
WATER QUANTITY							
Public water supply (PWS)	Surface water intakes	points shp	WVDHHR (2011)	8/2011	Measure of water withdrawal along stream	Point locations required verification (not all outtakes along streams)	Limited

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
Large quantity users (LQU)	Withdrawal over 750,000 gal	points shp	WVDEP (2011)	8/2011	Measure of water withdrawal along stream	Self-reporting; table listed coordinates as "fuzzy", required verification	Limited
Wastewater treatment plants (WWTP)	Locations of municipal sewage treatment plants	points shp	WVDEP (2002)	5/18/2011	Identify points where streamflow may be altered due to plant discharges		None
USGS stream gages	Stream gage locations	points shp; Excel table	USGS (2003)	8/2011	Measure of flow variation along stream		None
WETLAND QUANTITY		1					1
National Wetlands Inventory (NWI)	Locations of wetland features	polygon shp	FWS (2011)	4/2011	Identify locations of wetland features	Data derived from dated aerial imagery	Limited
Historical topo maps	Topo maps (from 1900- 1930)	image	USGS/WVDEP (varies)	8/2011	Identify areas labeled as wetlands in the past		None
Floodplain area	FEMA 100-year floodplain area		WVGISTC (11/01/2010		Identify areas with potential wetland hydrology based on presence of floodplain		None
WATER QUALITY							
Impaired streams (303(d), TMDL)	2010 303(d) and TMDL listed streams	line shp	WVDEP (1/11/2011)	2/2011	Identify streams with known impairments	Combined with AMD impaired streams	Limited
Impaired streams (AMD)	Acid mine drainage streams	line shp	WVDEP (2/11/2009)	3/2010	Identify streams with known impairments	Combined with 303(d), TMDL impaired streams	Limited
WAB database samples	Water quality samples (includes water chemistry parameters, GLIMPSS, taxa richness, RBP scores, etc)	points shp	WVDEP (10/2011)	12/14/2011	Measure of water quality parameters, biotic index and riparian habitat, etc	Point locations required some verification due to NHD24k accuracy issues	Limited
NLCD impervious cover (2006)	Impervious surfaces	raster	USGS (2/16/2011)	2/2011	Measure of contributing area of impervious cover	Data based on 2006 aerial images, low resolution	None

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
BIODIVERSITY							
Element occurrences	Natural Heritage Program rare species	points shp	WVDNR (2/14/2011)	2/2011	Identify areas with known rare species	Some geographic coordinate errors (outside WV boundaries); some data prior to 1991	Moderate
SGNCs	Species in greatest need of conservation	Excel table	WVDNR (2005)	8/2011	Join with element occurrences		None
Odonates	Additional odonate occurrences	Excel table	WVDNR (8/2011)	8/2011	Join with element occurrences	Some element codes missing	Moderate
Hellbenders	Hellbender occurrences	Excel table	The Good Zoo, Wheeling, WV (11/2010)	11/2010	Join with element occurrences	Locations required verification.	Limited
Crayfish	Crayfish occurrences	Excel table	Researcher at West Liberty University (12/2010)	12/2010	Join with element occurrences	Locations required verification, some geographic coordinate errors (outside WV boundaries)	Limited
Fish	Fish occurrences	Excel table	WVDNR (10/2010)	10/2010	Join with element occurrences		None
Ecoregional targets	TNC target species for 3 ecoregions of WV	Excel table	TNC - ERO (2007)	8/2011	Join with element occurrences	Some data prior to 1991	Moderate
Mussel streams	Stream reaches containing endangered mussels	Excel table	WVDNR (09/2011)	9/2011	Join with NHD 24K streams shapefile; prioritize streams with endangered mussel species or high quality habitat	No specific information beyond presence/absence of unspecified endangered species in stream reach; some stream codes outdated	Moderate
Trout streams	Naturally reproducing trout streams	line shp	WVDEP (2010)	8/2011	Identify DEP priorities for trout streams		None
Northeast terrestrial habitat types	Terrestrial habitat types based on shared characteristics across region	raster	TNC – ERO (7/14/2011)	8/8/2011	Surrogate measure of potential species diversity based on variety of available habitats		None

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
PHYSICAL INTEGRITY							
Soils	Soils data by county	polygon shp	SSURGO (varies by county)	Varies	Determine hydric soils; highly erodible soils; high infiltration rate soils; soil buffering capacity	Varying resolution between county; generalized data; incomplete coding	None
Fire regime condition class (FRCC)	Degree of departure from reference condition vegetation	raster	USFS LANDFIRE (2007)	7/2011	Estimate of change in vegetation conditions	Low resolution	None
Heterogeneity	Landscape heterogeneity metric reflecting elevation change and landform variety	raster	TNC - ERO (03/2011)	3/2011	Indicate variation in landscape topography and landforms		None
HYDROLOGIC CONNE	CTIVITY						
Active River Area (ARA)	Riparian and material contribution zones along streams	raster	TNC - ERO (2009)	2/2011	Define riparian area		Moderate
Northeast Association of Fish and Wildlife Association (NEAFWA) streams	Stream classifications and stream order/size	line shp	TNC - ERO (2008)	8/2010	Determine headwaters streams		None
Power plants	Locations of power plants on small (size class 1a) streams	points shp	Ventyx	12/5/2011	Identify locations where plant discharge may change water temperature and disrupt aquatic connectivity for species		None
HABITAT CONNECTIV	ITY				<u>.</u>		
Forest blocks	Unfragmented forest blocks larger than 100 acres	polygon shp	TNC - PAFO (07/2011)	8/2011	Prioritize areas of unfragmented forest		None
Local integrity	Local integrity metric reflecting unfragmented natural habitat	raster	TNC - ERO (03/2011)	3/2011	Prioritize areas of unfragmented natural habitat (forest, grassland, wetland, stream)		None
PROTECTION PRIORIT	IES						
Aquatic portfolio	TNC priority streams	line shp	TNC - ERO (2/25/2011)	3/2011	Identify TNC priority streams		None
Terrestrial portfolio	TNC priority lands	polygon shp	TNC - ERO (07/2011)	8/2011	Identify TNC priority lands		None

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
Secured lands	Preserves and publicly owned lands	polygon shp	TNC – ERO/WVFO (6/27/2011)	NA	Identify lands already under protection or in public trust		None
National Forest proclamation boundary	USFS target area for land acquisition	polygon shp	USFS (2004)	2/2011	Identify USFS priority lands		None
Watershed assessment results	Division of Forestry analysis results for Water Quality and Forest Resource Areas	polygon shp	WVDOF (2010)	8/2011	Identify WVDOF priority lands	By HUC12	None
National Park Service priority areas	Priority interest areas identified by the NPS	polygon shp	NPS	2/152013	Identify NPS priority lands	No metadata for attributes	None
RESOURCE EXTRACTIO	N			1			
Oil and gas wells	Locations of oil and gas wells	points shp	WVDEP (8/15/2011)	8/2011	Identify locations of active oil and gas wells	Point locations required verification	Limited
Marcellus Shale gas wells	Locations of Marcellus shale gas wells	points shp	WVGES (4/14/2011)	8/2011	Identify new and existing Marcellus wells	Point locations required verification	Limited
Surface mines (Appalachian Voices)	Digitized mining footprint for watersheds based on aerial imagery	polygon shp	Appalachian Voices (2007)	9/2011	Identify areas with active surface mines as of 2007		None
Abandoned mine lands	Outline of abandoned mine areas	polygon shp	WVDEP (1996)	2/2010	Identify areas with possible residual effects from mining activity	Accuracy issues	Limited
Mining footprint	Outline of current mining activity	polygon shp	WVGES (3/10/2011)	3/2011	Identify areas with current surface and underground mining activity	Some conflicts with aerial imagery (mining land possibly already overgrown/ reclaimed)	Extensive
Valley fills	Valley fill locations from SMCRA permit maps	polygon shp	WVDEP (8/23/2011)	8/2011	Identify areas with surface mining refuse	Some overlap with other mining datasets	Limited
Coal refuse structures	Coal refuse (disposal area) locations	polygon shp	WVDEP (8/23/2011)	8/2011	Identify areas with surface mining refuse	Some overlap with other mining datasets	Limited
Coal production data	Measure of coal production per facility, by year	Excel table	US EIA (2007, 2008)	7/2011		No MSHA ID in state data; production data distributed by county/mine site	None

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
Mineral operations	Quarries, mineral extraction facilities	points shp	USGS (2002)	3/2010	Identify surface mineral extraction activities	Some duplicate data; not polygon data so unable to calculate area	Limited
Timber harvesting	Locations of timber permits and acreage	points shp	WVDOF (2010)	6/2011	Identify timber extraction activities	Not polygon data so unable to determine exact spatial location	Limited
DEVELOPMENT & AGR	RICULTURE						
National Pollutant Discharge Elimination System (NPDES)	Locations of permitted discharges to surface water	points shp	WVDEP (2011)	8/2011	Identify possible point source pollution along streams	Point locations required verification	Limited
NLCD 2006	National Landcover dataset	raster	USGS (2/16/2011)	2/2011	ID development/agriculture/ pasture landcover types	Data based on 2006 aerial images, low resolution	None
Buildings	Locations of structures	points shp	WVSAMB (2003)	8/2011	Used to identify land disturbance and generate septic systems points for structures outside of city boundaries		None
Solid waste facilities	Locations of landfills	points shp	WVDEP (2002)	5/2010	Identify possible source of pollution		None
HABITAT FRAGMENTA	TION						
Roads	Interstate, US and state highways, county road networks	line shp	WVDOT (2011)	9/2011	Roads as potential source of runoff/sedimentation pollution and as forest habitat and stream fragmenting features (road/stream crossings)		None
Railroads	Railroad networks	line shp	WVDNR (2010)	5/2010	Railroads as potential source of runoff/sedimentation pollution and as forest and stream fragmenting features (RR/stream crossings)		None
Energy transmission lines	Locations of energy lines, by voltage class	line shp	Ventyx (08/2011)	9/2011	Lines as habitat fragmenting features		None
Natural gas pipelines	Locations of pipelines, by diameter	line shp	Ventyx (08/2011)	9/2011	Lines as habitat fragmenting features		None

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
Wind turbines	Locations of wind turbines and wind farms	points shp	TNC - PAFO (12/25/2010)	5/2011	Points as habitat fragmenting features, source of pollution (sedimentation)		None
Bridges	Locations of bridges and culverts	polygon shp	WVDOT (2008)	8/2011	Structures as habitat fragmenting features	Locations required verification	Limited
Dams	Locations of impoundments	points shp	TNC - ERO (2/10/2011)	2/2011	Points as habitat fragmenting features; surface water capture & storage capacity	Point locations required verification	Limited
ECOLOGICAL THREATS							
Non-native invasive species	Locations of invasive species sitings	Excel table	WVDA (8/2011)	8/2011	Estimate of invasive species location and coverage	Data table contains entries/formats not compatible with import into GIS; some geographic coordinate errors	Moderate
Basal area loss, by species	National Insect and Disease Risk Maps	rasters	USFS (2006)	8/2011	Estimate of timber pests and pathogens		None
Quarantined counties	Infested/infected/ quarantined counties	polygon shp	WVDA (2011)	8/2011	Used to estimate pests & pathogens threats	Resolution by county	Limited
FUTURE THREATS							
Mining permit boundary	Existing mining permit boundaries	polygon shp	WVDEP (8/23/2011)	8/24/2011	Used to estimate high potential threat of future mining activity		None
Unmined coal	Unmined coal formations	polygon shp	WVGES (6/30/2011)		Used to estimate potential threat of future mining activity	Some areas not mapped yet	None
Marcellus Shale thickness	Thickness of Marcellus shale geology	polygon shp	WVGES (11/16/2011)	11/22/2011	Used as surrogate for potential of gas well development		None
Wind development potential	Areas with high potential for wind energy development	polygon shp	National Renewable Energy Lab (2003)	5/10/2010	Used to estimate potential threat from wind development		None
Proposed wind turbines	Known locations of proposed wind turbines	points shp	TNC – PAFO (12/2010)		Used to estimate potential threat from wind development	Some locations are existing wind turbines	Limited
Proposed energy transmission lines	Known locations of proposed energy lines	line shp	Ventyx (01/2012)	01/2012	Used to estimate potential fragmentation threat from energy lines	Some large projects have been cancelled (e.g., PATH)	Limited
Proposed natural gas pipelines	Known locations of proposed gas lines	line shp	Ventyx (01/2012)	01/2012	Used to estimate potential fragmentation threat from energy lines	Some large projects may be missing from data	Limited

Туре	Description	Format	Source (Date Published)	Downloaded	Intended Use	Limitations	QA/QC*
Proposed power plants	Known locations of proposed power plants	points shp	Ventyx (01/2012)	01/2012	Used to estimate potential threat from power plants	Some projects have been cancelled	Limited
Geothermal potential	Estimate of geothermal temperature ranges	kmz	SMU Geothermal Lab (2011)	10/27/2011	Used to estimate potential threat from geothermal energy		None
Population projections	Population projection to 2030, by county	PDF	WVU (08/2011)	2011	Used to estimate potential threat from development	County-level scale; only percentage estimates	None
Development potential	Potential for expansion of development, based on watershed	varies	varies		Used to estimate potential threat from development	Only data found was for Morgantown area in Monongahela	None
Future roads	Known locations of proposed new routes	line shp	WVDOT (2003)	9/28/2011	Used to estimate potential fragmentation threat from road construction	Some roads in dataset have already been constructed	Limited
Resiliency	From TNC resiliency dataset	raster	TNC – ERO/PAFO (3/06/2012)	3/14/2012	Used to estimate potential resiliency to climate change	Regional level analysis, not specific to WV	None
Regional flow (current density)	From TNC resiliency dataset	raster	TNC – ERO/PAFO (3/06/2012)	3/14/2012	Used to estimate potential resiliency to climate change	Regional level analysis, not specific to WV	None

Final Report

* In the initial stages of data collection, datasets requiring varying degrees of Quality Assurance/Quality Control (QA/QC) were identified, the levels of which are explained below. All of the following descriptions refer to QA/QC activities conducted by the watershed assessment project team and do not refer to any QA/QC conducted by the generator of the data. (Many of the agencies that collected or generated the data adhere to more or less rigorous and extensive QA/QC protocols.)

- Little or no QA/QC required: National or state agency data such as the National Land Cover Dataset or WVDEP water quality data, and data generated by lead scientists at TNC Eastern Regional Office and published in the open literature, such as landscape connectivity and resiliency data. Generally these data need only to be clipped to the desired geographic extent or possibly converted between vector and raster data types.
- Limited amount of QA/QC required: Data that may have been received as "fuzzy" or with point locations requiring verification, such as large quantity water withdrawals, public water supply data and wells locations. Generally, verification involves comparing against 2010 aerial imagery or address information to ensure that points are accurately located. Limited QA/QC often results in data being filtered by attributes to only those features that are most reliable (e.g., taking only active well locations).
- Moderate amount of QA/QC required: Data generated by TNC partners and maintained in internal databases, such as locations of rare species ("element occurrences") collected by West Virginia Natural Heritage Program. Such data may include blank, duplicate, or erroneous records, or data earlier than the time frame during which it can be reasonably expected that a species or environmental condition persists. In these cases, removal, addition, or correction of records renders the data acceptable. Moderate QA/QC may also be conducted on datasets

to ensure compatibility with the formatting or resolution needs of the project, such as manual amendment of datasets generated from models.

• Extensive QA/QC required: Data that are found to be deficient for this analysis, irrespective of the data source, but that are necessary for a complete watershed assessment and for which no alternative exists. Such data may need extensive additions or deletions of geographic features or attributes, often based on manual verification from other data sources, such as the most recent aerial imagery (TNC 2011a). The only dataset that required extensive QA/QC for this project (mining footprint data from WVDEP) was later removed as a metric and replaced by more recent and complete datasets.

Appendix B: Metrics Description and GIS Process

Streams

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
WATER QUALITY			·		
Impaired	Impaired Streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Identify streams with known water quality impairment	Merge 303(d), TMDL , AMD impaired streams, Identity to planning unit and Dissolve to get miles per planning unit	2
Bio	Biologically impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: Bio, Identity to planning unit and calculate miles per planning unit	O ^f
DioxPCB	Dioxin/PCB impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: PCBs, Identity to planning unit and calculate miles per planning unit	O ^f
Fecal	Fecal coliform impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: Fecal/Bacteria, Identity to planning unit and calculate miles per planning unit	O ^f
pHImp	pH impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: pH, Identity to planning unit and calculate miles per planning unit	O ^f
MetalsImp	Metals impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: Aluminum, Iron, Lead, Manganese, Identity to planning unit and calculate miles per planning unit	O ^f
ChlorideImp	Chloride impaired streams	Impaired Streams: 303(d), TMDL, AMD (WVDEP)	Not considered in final analysis	Select features where Cause: Chloride, Identity to planning unit and calculate miles per planning unit	O ^f
MedpH*	Median pH sample values	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Represent pH values for sampled streams	pH index, calculated on median values among samples per station: 100: >10 or <5, 200: >9 or <6, 300: >8 or <6.5, 400: 6.5 - 8	2
MedRefIndex	Median reference index values	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Weighted Percentage of points that are DEP reference points (median among samples per station)	0 ^a
MedSulfate	Median sulfates	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Represent sulfates values for sampled streams (possible indicator of impairment due to mining)	Sulfate index, calculated on median values among samples per station: 100: >250 mg/l, 200: >50, 300: >25, 400: <=25	1

Final	l Report

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
MedNitro	Median nitrogen	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Total Kjeldahl Nitrogen index, calculated on median vallues among samples per station: 100: >=0.5 mg/l, 200: >0.4, 300: >0.25, 400: <=0.25	0ª
MedStressed	Median stressed	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Median percent of stations fitting DEP's Stressed Category (GLIMPSS calculation)	0 ^a
MedMetal	Median metals	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Median % of measured metals (Al, Fe, Mn, Se, Cu, Zn) not attaining DEP's water quality standards per station, calculated on median values among samples	O ^f
MedChloride	Median chloride	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Median chloride index: 100: >860mg/l, 200:>230, 300:>115, 400: <=115	0 ^f
MedSpecCond*	Median specific conductivity	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Represent specific conductivity values for sampled streams (possible indicator of impairment due to mining)	Specific Conductance index, calculated on median values of samples per station: 100: >835 umhos/cm, 200: >500, 300: >200, 400: <=200	1.5
MedGLIMPSS	Median GLIMPSS scores	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Represent benthic macroinvertebrate communities in sampled streams	GLIMPSS_CF index of Percent Threshold, calculated on median values: 100: <50, 200: <100, 300: <125, 400: >=125	2
MedS&E	Median sedimentation & embeddedness	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Represent RBP habitat score of streambank condition	Median sum of individual indices for Embeddedness and Sedimentation scores: 100: <11, 200: <21, 300: <31, 400: >=31	1
MaxMinpH	Maximum/minimum pH	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	pH index calculated on extreme values among samples for each station (maximum or minimum): 100: >10 or <5, 200: >9 or <6, 300: >8 or <6.5, 400: 6.5 - 8	0ª
MinRefIndex	Minimum reference index value	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Weighted Percentage of points that are DEP reference points (minimum among samples per station)	0 ^a
MaxSulfate	Maximum sulfates	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Sulfate index, calculated on maximum values among samples per station: 100: >250 mg/l, 200: >50, 300: >25, 400: <=25	0 ^a
MaxNitro	Maximum nitrogen	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Total Kjeldahl Nitrogen index, calculated on extreme values among samples per station: 100: >=0.5 mg/l, 200: >0.4, 300: >0.25, 400: <=0.25	0 ^a

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
MaxStressed	Maximum stressed	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Maximum percent of stations fitting DEP's Stressed Category (GLIMPSS calculation)	0 ^a
MaxMetal	Maximum metals	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Median % of measured metals (Al, Fe, Mn, Se, Cu, Zn) not attaining DEP's water quality standards per station, calculated on extreme values	0 ^a
MaxChloride	Maximum chloride	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Chloride index, calculated on extreme values among samples per station (maximum or minimum): 100: >860mg/l, 200:>230, 300:>115, 400: <=115	0 ^a
MaxSpecCond	Maximum specific conductivity	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Specific Conductance index, calculated on extreme vallues among samples per station: 100: >835 umhos/cm, 200: >500, 300: >200, 400: <=200	Oª
MinGLIMPSS	Minimum GLIMPSS score	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	GLIMPSS_CF index of Percent Threshold, calculated on extreme values among samples per station (maximum or minimum): 100: <50, 200: <100, 300: <125, 400: >=125	0 ^a
MinRBP	Minimum Rapid Bioassessment Protocol score	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Total RBP Score index, calculated on extreme values among samples per station: 100: <60, 200: <110, 300: <160, 400: >=160	0 ^a
MinBSS	Minimum Bank Stability Score	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Bank Stability Score index, calculated on extreme values among samples per station (maximum or minimum): 100: <6, 200: <16, 300: <17, 400: >=16	0 ^a
MinS&E	Minimum sedimentation and embeddedness score	Water Assessment Branch (WAB) water quality sample data (WVDEP)	Not considered in final analysis	Sum of individual indices for Embeddedness and Sedimentation scores, calculated on extreme values among samples per station: 100: <11, 200: <21, 300: <31, 400: >=31	Oª
VolRem	Voluntary remediation sites in riparian area	Voluntary Remediation Sites (WVDEP)	Not considered in final analysis	Spatial join to get number per planning unit	0 ^d
KarstRip	Karst features in riparian area	Karst geology (WVDNR)	Not considered in final analysis	Identity to planning unit and calculate square miles per planning unit	0 ^f

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
HES	Highly erodible soils	Soils by county (SSURGO)	Not considered in final analysis	Generate erosion hazard dataset from Soil Data Viewer, select all values of EroHzdORT = severe, very severe, identity to planning unit, calculate square miles per planning unit	0 ^g
Imperv1*	Percent imperviousness	NLCD Impervious surface (USGS)	Generates increased run off as potential non-point source of pollution to streams	Convert raster to polgyon, Identity to planning unit, Dissolve to get mean percent imperviousness per planning unit	2 ^b
AllWells	Wells in riparian area	All Wells (WVDEP)	Source of sedimentation	Spatial join to get number per planning unit	1.5 ^b
CBMTWellProd	Coal bed methane and Trenton well production	Coal bed methane and Trenton well production (WVGES)	Not considered in final analysis	Join Excel table by well ID, dissolve to get mean production per HUC12	O ^d
ActiveSurface1	Active surface mining	LULC 2009 Mined lands (WVU	Not considered in final analysis	Merge mining polygons, Identity to	0 ^{a,c}
ActiveSurfaceRip1	Active surface mining in riparian area	NRAC); Valley Fills/Refuse Structures (WVDEP)	Not considered in final analysis	planning unit and calculate to get square miles per planning unit	0 ^f
SurfaceMine1*	Surface mining (active and legacy)	LULC 2009 Mined and reclaimed mine lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP); Abandoned mine lands (WVDEP)	Source of pollutants and sedimentation	Merge all mining polygons, Identity to planning unit and calculate to get square miles per planning unit	2
UndrgrndMine1	Underground mining	Underground mining (WVGES)	Potential impacts to water quality from acid mine drainage	Identity to planning and calculate to get square miles per planning unit	2 ^b
TotalCoalProd	Total coal production	Coal production: 2000-2010 (US EIA)	Not considered in final analysis	Calculate cumulative mine production totals in Excel, Join table, distribute by percent area active mining per county, calculate per planning unit	O ^a
MinOps	Mineral operations	Mineral operations (USGS)	Not considered in final analysis	Spatial join to get number per planning unit	0 ^d
Timber	Timber harvesting	Timber operations (WVDOF)	Not considered in final analysis	Identity to planning unit and Dissolve to get total square miles per planning unit	0 ^f
NPDES	National Pollutant Discharge Elimination System permit sites	NPDES permit sites (WVDEP)	Not considered in final analysis	Select features where perm_type: Industrial, Sewage; iut_code: OUTLT, CSO, Spatial Join to get number per planning unit, normalize by stream miles per planning unit	Oª

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
CoalNPDES	Coal-related NPDES permit sites	Coal NPDES (WVDEP)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^a
Ag	Agriculture	LULC 2009 (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 82, Identity to planning unit and calculate square miles per planning unit	0 ^{a,c}
Graze	Grazing	LULC 2009 (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 81, Identity to planning unit and calculate square miles per planning unit	0 ^{a,c}
Developed	Development	LULC 2009 (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 20, Identity to planning unit and calculate square miles per planning unit	0 ^{a,c}
AgRip1	Agriculture in riparian area	LULC 2009 (WVU NRAC)	Potential source of pollutants and sedimentation in stream	Convert raster to polygon, Select features where Value: 82, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	1
GrazeRip1	Grazing in riparian area	LULC 2009 (WVU NRAC)	Potential source of sedimentation in stream	Convert raster to polygon, Select features where Value: 81, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	1
DevelopedRip1	Development in riparian area	LULC 2009 (WVU NRAC)	Potential source of pollutants and sedimentation in stream (from run off and construction)	Convert raster to polygon, Select features where Value: 20, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	1
NatCoverRip1	Natural cover in riparian area	LULC 2009 (WVU NRAC)	Can identify natural conditions of resiliency and riparian health in watershed	Convert raster to polygon, Clip to riparian area, Select features with values: 41, 42, 43, 71, 91, 92, Identity to planning unit and Dissolve to get square miles per planning unit	2
NatcoverHdwtr	Natural cover in headwater stream catchments	LULC 2009 (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features with values: 41, 42, 43, 71, 91, 92, Select catchments containing headwater streams, Clip Natural Cover to headwater catchments, Identity to planning unit and Dissolve to get square miles per planning unit	0 ^a
AllRdRail	Road/railroad density	Roads (WVDOT); Railroads (WVDNR)	Potential source of sedimentation in stream	Merge shapefiles, Identity to planning unit and calculate miles per planning unit	1.5

Final F	leport
---------	--------

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
AllRdRailRip1	Road/railroad density in riparian area		Not considered in final analysis	Merge shapefiles, Clip to riparian area, Identity to planning unit and calculate miles per planning unit	0 ^a
Superfund	Superfund sites	Superfund sites (USEPA Envirofacts)	Not considered in final analysis	Select values where CERC1_INT = superfund NPL, Spatial Join to get number per planning unit	0 ^d
TSD	Toxic waste storage and disposal	Hazardous waste disposal sites (USEPA Envirofacts)	Not considered in final analysis	Select features where value RCRA1_INT, RCRA2_INT, or RCRA3_INT = TSD, Spatial Join to get number per planning unit	0 ^d
BoatLaunch	Recreational boat launches	Boat launches (WVDNR)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^d
Septic	Potential septic systems		Not considered in final analysis	Digitize sewer areas from WV IJDC GIS Data	0 ^{a,c}
SepticRip	Potential septic systems in riparian area	Septic systems (WVFO generated)	Not considered in final analysis	Portal, Erase structure points that fall within these areas, Clip to riparian area, Spatial Join to get number per planning unit	0 ^b
Landfill	Landfills	Landfills (WVDEP)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^{b,d}
WATER QUANTITY					
PWS	Public water supply intakes	Public water supply intakes (DHHR)	Points of water withdrawal from stream	Select any features except wells, Spatial Join to get number per planning unit, normalize by stream mile	0.5
LQU	Large quantity users		Potential flow alteration from large quantity water withdrawals	Select features where Size class 1(a,b) and	2
LQU3yr	Large quantity users 3 Year Average water use	Large quantity users (WVDEP)	Not considered in final analysis	2, find LQU along those stream reaches	0 ^f
PWSTrib	Tributaries draining to a public water supply reservoir	Public water supply (DHHR) tributaries (NHD 24K)	Not considered in final analysis	stream segments draining to PWS reservoir; FAC_TYPE: IN, RS	0 ^d
WWTP	Wastewater treatment plants	Sewer treatment plants (WVDEP)	Potential flow alteration from treated water discharges	Select features where sub_desc: Ind POTW, Spatial Join to get number per planning unit, normalize by stream miles	0.5 ^e
DamDrainage	Dam drainage areas (catchment above dam sites)	Dam drainage area (WVFO generated)	Surrogate for potential flow alteration and dam storage capacity	Select NHDPlus catchments that drain to dam point along stream, Identity to planning unit and Dissolve to get square miles per planning unit	1 ^b

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
Imperv2*	Percent imperviousness	NLCD Impervious surface (USGS)	Surrogate for potential flow alteration from stormwater run off	Convert raster to polgyon, Identity to planning unit, Dissolve to get mean percent imperviousness per planning unit	1.5 ^b
ActiveSurface2	Active surface mining	LULC 2009 Mined lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP)	Not considered in final analysis	Merge mining polygons, identity to planning unit and calculate square miles per planning unit	O ^f
LegacySurfaceRip1	Legacy surface mining in riparian area	LULC 2009 reclaimed mine lands (WVU NRAC); Abandoned mine lands (WVDEP)	Not considered in final analysis	Merge mining polygons, identity to planning unit and calculate square miles per planning unit	O ^f
SurfaceMine2	Surface mining (active and legacy)	LULC 2009 Mined and reclaimed mine lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP); Abandoned mine lands (WVDEP)	Source of pollutants and sedimentation	Merge all mining polygons, Identity to planning unit and calculate to get square miles per planning unit	1
UndrgrndMine2	Underground mining	Underground mining (WVGES)	Surrogate for potential flow alteration from mining discharge	Identity to planning and calculate to get square miles per planning unit	1.5 ^b
LowFlow	Low flow impaired streams	Low flow impaired streams (WVDEP)	Not considered in final analysis	Select features where Cause: Low Flow, Identity to planning unit and calculate miles per planning unit	O ^d
Consum	Consumptive water use		Not considered in final analysis	Sum of consumptive and non-comsumptive	0 ^g
NonConsum	Non-consumptive water use	Consumptive use data (USGS)	Not considered in final analysis	water usage by county	0 ^g
HYDROLOGIC CONNECTIVITY					
Unimpeded	Unimpeded streams	Functional river network (TNC - ERO)	Not considered in final analysis	Select features where value N_SZCL > = 4, Identity to planning and Dissolve to get miles per planning unit	0 ^e
TempImp	Temperature impaired streams	303(d) Listed Impaired Streams - Temperature (WVDEP)	Not considered in final analysis	Select features where Cause: Temp Identity to planning unit and calculate miles per planning unit	O ^d
Hdwtrs	Headwater streams	Headwaters (NHD 24K)	Prioritize headwaters streams	Select features where Stream Order = 1,2, Identity to planning unit and Dissolve to get stream miles per planning unit	1.5 ^b

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
LocInt	Mean local integrity score	Local integrity (TNC - ERO/PAFO)	Measure of local connectedness of landscape	Convert raster to polygon; Identity to planning unit, dissolve to mean gridcode	1
LocIntHdwtr	Local integrity of headwater stream catchments	Local integrity/Headwater catchments (TNC - ERO/PAFO)	Not considered in final analysis	local integrity score (grid_code); Headwater catchments	0 ^a
WetArea	Wetland area	NWI Wetlands (FWS)	Prioritize planning units with greater wetland areas	Type: Freshwater emergent wetland, Freshwater forested/shrub wetland	1
PowPlants	Power plants	Power plants (Ventyx)	Identify potential temperature increase from power plant discharges in entire stream segments as a potential fragmenting feature	Select streams features where size class = 1(a,b) and 2 streams, Select by location any power plant points along stream, Spatial join to get number per planning unit	0.5
Forestriparea	Forested riparian area	LULC 2009 (WVU NRAC)	Identify potential temperature maintenance from canopy cover of stream segments	Convert raster to polygon, Select features where Value: 41, 42, 43, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	1.5 ^b
Dams	Dams	Dams (TNC - ERO)	Fragmenting features that inhibit fish passage and natural flow levels within stream networks	Select features where Use = 1,2, spatial join to get number per planning unit	1.5 ^b
Culverts	Potential culverts	Culverts (WVFO generated)	Not considered in final analysis	Headwater streams/roadRR crossings; Bridges over headwater streams	0 ^a
Bridges	Bridges	Bridges (WVDOT)	Not considered in final analysis	Bridges over non-headwater streams	0 ^a
AllRdRailRip2	Road/railroad density in riparian area	Roads (WVDOT); Railroads (WVDNR)	Potential source of sedimentation in stream	Merge shapefiles, Identity to planning unit and calculate miles per planning unit	2
BIODIVERSITY					
AllSGNCRip	Species in Greatest Need of Conservation in riparian area	SGCNs (WVDNR)	Identify and prioritize known locations of rare, endangered or threatened species	Select features that are G1-G3, S1-S3, Federally listed, Clip to riparian area, Spatial Join to get number per planning unit	1.5
Muss	Mussel streams	Mussel streams (WVFO generated)	Stream quality indicator	Identity to planning unit and Dissolve to get miles per planning unit	1
Trout	Trout streams	Trout streams (WVDEP)	Not considered in final analysis	Identity to planning unit and Dissolve to get miles per planning unit	0 ^d
MedTaxa	Median taxa richness	Taxa richness (WVDEP)	Not considered in final analysis	GLIMPSS_CF taxa	0 ^f

Final Report	Fina	l Report
--------------	------	----------

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
MaxTaxa	Maximum taxa richness	Taxa richness (WVDEP)	Indicator of habitat quality	GLIMPSS_CF taxa	1 ^b
NEHabRip	Northeast terrestrial habitat types	NE terrestrial habitat types (TNC - ERO)	Higher diversity of habitat types leads to greater species diversity	Convert raster to polygon, Clip to riparian area, Identity to planning unit and Dissolve to get count per planning unit	1
SpeciesPredict	Species diversity prediction index	Ecological Land Units (TNC - ERO)	Considers landform variability measures as possible indicators of resilient sites for presence of rare species, both currently and in the future	Export tables to Excel, calculate # geology classes/elevation range/hectares calcareous bedrock per planning unit, normalize data, roll up into index by planning unit	0 ^g
CalcBedRip	Calcareous bedrock in riparian area	Ecological land units (TNC - ERO)	Contributes to soil structure and topography that support a variety of vegetative and animal species; partial predictor of rare species	Select features where GEOL_DESC = Calcareous sed/metased; Mod calcareous sed/metased, Clip to riparian area, Identity to planning unit, Dissolve to get square miles per planning unit	1
NNISRip	Non-native invasive species in riparian area	Non-native invasive species (WVDA/WVDNR)	Non-native invasive species displace natives; alter food webs	Spatial Join to get number per planning unit	1.5
Corbicula	Corbicula	Corbicula mussels (WVDEP)	Not considered in final analysis	None: Access database by planning unit	0
Carp	Carp	Carp (WVDEP)	Not considered in final analysis	None: Access database by planning unit	0
Zebras	Zebra mussel streams	Zebra Mussels (WVDNR)	Not considered in final analysis	Identity to planning unit, Dissolve to get stream miles per planning unit	0
Infected	Quarantined/Infested/Infected counties	Quarantined/Infested/Infected counties (WVDA)	Not considered in final analysis	Sum number per county, Identity to planning unit and Dissolve to get mean per planning unit	0 ^a
RIPARIAN HABITAT					
NatcoverRip2	Natural cover in riparian area	LULC 2009 (WVU NRAC)	Functional contribution in terms of water storage and filtration	Convert raster to polygon, Select Codes 41, 42, 43, 52, 71, 90, 95, Clip to riparian area, Identity to planning unit, Dissolve to get square miles per planning unit	2 ^b
AgRip2	Agriculture in riparian area	LULC 2009 (WVU NRAC)	Source of sediments and other pollutants	Convert raster to polygon, Select Code 82, Clip to riparian area, Identity to planning unit, Dissolve to get square miles per planning unit	1
GrazeRip2	Grazing in riparian area	LULC 2009 (WVU NRAC)	Source of sedimentation	Convert raster to polygon, Select Code 81, Clip to riparian area, Identity to planning unit, Dissolve to get square miles per planning unit	1

Final	Report
-------	--------

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
DevelopedRip2	Development in riparian area	LULC 2009 (WVU NRAC)	Source of sedimentation and other pollutants	Convert raster to polygon, Select Code 20, Clip to riparian area, Identity to planning unit, Dissolve to get square miles per planning unit	O ^f
ImpervRip*	Percent imperviousness in riparian area	NLCD Impervious surface (USGS)	Generates increased run off as potential non-point source of pollution to streams	Convert raster to polgyon, Clip to riparian area, Identity to planning unit, Dissolve to get mean percent imperviousness per planning unit	2
MedRBP	Median Rapid Bioassessment Protocol score	WAB database (WVDEP)	Indicator of stream physical habitat quality	Median total RBP index: 100: <60, 200: <110, 300: <160, 400: >=160	1
MedBSS	Median Bank Stability score	WAB database (WVDEP)	Not considered in final analysis	Median RBP Bank Stability Score index: 100: <6, 200: <16, 300: <17, 400: >=16	0
ActiveSurfaceRip2*	Active surface mining in riparian area	LULC 2009 Mined lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP)	Source of sediments and other pollutants	Merge mining polygons, Identity to planning unit and calculate square miles per planning unit	2
LegacySurfaceRip	Legacy surface mining in riparian area	LULC 2009 reclaimed mine lands (WVU NRAC); Abandoned mine lands (WVDEP)	Source of sediments and other pollutants	Merge mining polygons, Identity to planning unit and calculate square miles per planning unit	1
AllWellsRip	Wells in riparian area	Wells (WVDEP)	Source of sediments and other pollutants	Spatial Join to get number per planning unit	1
AllRdRailRip3	Roal/railroads in riparian area	Roads (WVDOT); Railroads (WVDNR)	Source of sediments and other pollutants	Merge shapefiles, Clip to riparian area, Identity to planning unit and calculate miles per planning unit	1.5
EnergyRip	Energy transmission lines in riparian area	Energy transmission lines (Ventyx)	Not considered in final analysis	Clip to riparian area, Identity to planning unit and calculate miles per planning unit	0 ^f
PipeRip	Pipelines in riparian area	Pipelines (Ventyx)	Not considered in final analysis	Clip to riparian area, Identity to planning unit and calculate miles per planning unit	0
WindRip	Wind turbines in riparian area	Wind turbines (TNC - PAFO)	Not considered in final analysis	Spatial join to get number per planning unit	0 ^{b,d}
BldgsRip	Buildings in riparian area	Structure points (WVSAMB)	Not considered in final analysis	Spatial join to get number per planning unit	0 ^{a,b}
PROTECTED LANDS					
GAP1Rip	GAP Status 1 in riparian area	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 1, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	O ^f

Final Report

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
GAP2Rip	GAP Status 2 in riparian area	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 2, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	O ^f
GAP3Rip	GAP Status 3 in riparian area	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 3, Clip to riparian area, Identity to planning unit and calculate square miles per planning unit	0 ^f

Wetlands

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight		
WATER QUALITY: POLLUTANT FILTRATION/SEDIMENT RETENTION							
ForestHdwtrWet1	Forested headwater wetlands	2009 LULC (WVU NRAC); Wetlands (NWI); Headwater streams (NHD 24K)	Functional contribution in terms of water storage and filtration	Select wetland buffers within 50 m of headwater stream, Clip forested landcover to wetland buffer, Identity to planning unit and Dissolve to get square miles per planning unit	2		
AgWet1	Agriculture in wetland buffer	2009 LULC (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 82, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	0 ^c		
GrazeWet1	Grazing in wetland buffer	2009 LULC (WVU NRAC)	Source of sedimentation	Convert raster to polygon, Select features where Value: 81, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	0 ^f		
DevelopedWet1	Development in wetland buffer	2009 LULC (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 20, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	0 ^c		
AgCatch	Agriculture in wetland catchment	2009 LULC (WVU NRAC)	Source of sediments and other pollutants	Convert raster to polygon, Select features where Value: 82, Clip to wetland catchment, Identity to planning unit and calculate square miles per planning unit	1		

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
GrazeCatch	Grazing in wetland catchment	2009 LULC (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 81, Clip to wetland catchment, Identity to planning unit and calculate square miles per planning unit	1
DevelopedCatch	Developed in wetland catchment		Source of sediments and other pollutants	Convert raster to polygon, Select features where Value: 20, Clip to wetland catchment, Identity to planning unit and calculate square miles per planning unit	1
ForestCatch	Forest Cover in wetland catchment		Not considered in final analysis	Convert raster to polygon, Select features where Value: 41, 42, 43, Clip to wetland catchment, Identity to planning unit and calculate square miles per planning unit	0 ^a
NatCoverCatch	Natural Cover in wetland catchment		Functional contribution in terms of water storage and filtration	Convert raster to polygon, Select Codes 41, 42, 43, 52, 71, 90, 95, Clip to wetland catchment, Identity to planning unit, Dissolve to get square miles per planning unit	3 ^b
ImpervWet	Percent imperviousness of wetland buffer	NLCD 2006 Impervious	Not considered in final analysis	Convert raster to polgyon, Identity to planning	0 ^c
ImpervCatch	Percent imperviousness of wetland catchment	surface (USGS)	Source of sediments and other pollutants	unit, Dissolve to get mean percent imperviousness per planning unit	1 ^b
RoadsRRCatch	Roads/railroads in wetland catchment	Roads/rail	Not considered in final analysis	Merge shapefiles, Clip to wetland catchment, Identity to planning unit and calculate miles per planning unit	1
NPDESCatch	NPDES permits in wetland catchment	NPDES sites (WVDEP)	Not considered in final analysis	Spatial join to get number per planning unit	0
ActiveSurfaceWet1	Active surface mining in wetland buffer	LULC 2009 Mined lands (WVU NRAC); Valley	Not considered in final analysis	Merge mining polygons, Clip to wetland buffer, Identity to planning unit and calculate to get square miles per planning unit	0 ^c
ActiveSurfaceCatch	Active surface mining in wetland catchment	Fills/Refuse Structures (WVDEP)	Source of sediments and other pollutants	Merge mining polygons, Clip to wetland catchment, Identity to planning unit and calculate to get square miles per planning unit	2
SurfaceCoalProd	Surface coal production	Coal production 2000- 2010 (US EIA)	Not considered in final analysis	Calculate cumulative mine production totals in Excel, Join table, distribute by percent area active mining per county, calculate per planning unit	0

Final	Report
-------	--------

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
DistAllWells	Distance to wells	Oil and gas wells	Not considered in final analysis	Distance tool to get distance from wetland to well; Dissolve to get average distance	O ^d
AllWellsCatch	Wells within wetland catchment	(WVDEP)	Source of sediments and other pollutants	Clip shapefile to wetland catchment; Spatial join to get number per planning unit	1
SepticWet	Septic systems in wetland buffer	Septic systems as structure points which	Not considered in final analysis	Spatial join to get number per planning unit	0 ^f
SepticCatch	Septic systems in wetland catchment	fall outside of sewer area boundaries (digitized from WV IJDC GIS Data Portal)	Not considered in final analysis	Clip to wetland catchment; Spatial join to get number per planning unit	0 ^f
LandfillCatch	Landfills in wetland catchment	Landfills (WVDEP)	Not considered in final analysis	Clip to wetland catchment; Spatial join to get number per planning unit	0 ^{b,d}
MinOpsCatch	Mineral operations in wetland catchment	Mineral operations (USGS)	Not considered in final analysis	Clip to wetland catchment; Spatial join to get number per planning unit	0 ^d
TimberCatch	Timber harvesting in wetland catchment	Timber operations (WVDOF)	Not considered in final analysis	Clip to wetland catchment; Spatial join to get number per planning unit	O ^f
HYDROLOGY: FLOOD ST	ORAGE/CONNECTIVITY				
WetSize	Mean wetland size	Wetlands (NWI)	Not considered in final analysis	Select features where type: Freshwater emergent wetland, Freshwater forested/shrub wetland, Identity to planning unit, Dissolve to get mean size per planning unit	Oª
WetArea	Total wetland area	wettands (wwi)	Prioritize planning units with greater wetland areas	Select features where type: Freshwater emergent wetland, Freshwater forested/shrub wetland, Identity to planning unit, calculate square miles per planning unit	2 ^b
ForestHdwtrWet2	Forested headwater wetlands	2009 LULC (WVU NRAC); Wetlands (NWI); Headwater streams (NHD 24K)	Functional contribution in terms of water storage and filtration	Select wetland buffers within 50 m of headwater stream, Clip forested landcover to wetland buffer, Identity to planning unit and Dissolve to get square miles per planning unit	1
RatioCatchWet	Ratio of wetland area to wetland catchment area	Wetlands (NWI); Wetland catchments (based on NHDPlus)	Not considered in final analysis	Export Excel tables of wetland area and wetland catchment values, sum per planning unit, divide area by catchment	0 ^c

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
DistNearWtr	Distance to nearest surface water feature	Surface water features (NWI Wetlands, NHD24K Hydrography)	Not considered in final analysis	Distance tool to get distance from wetland to streams layer; Dissolve to get average distance	0 ^d
HdwtrWet	Headwater wetlands	Wetlands (NWI); Headwater streams (NHD 24K)	Not considered in final analysis	Select wetland buffers within 50 m of headwater stream, Identity to planning unit and Dissolve to get square miles per planning unit	0ª
FldForestWet	Forested wetlands within the floodplain	Floodplain (FEMA); Wetlands (NWI)	Functional role for flood storage capacity, indicates areas of potential wetland	Clip forest cover to wetland buffer; Clip to floodplain; Identity to planning unit and Dissolve to square miles per planning unit.	1 ^b
FloodArea	Floodplain area		development	Identity to planning unit; Dissolve to get square miles per planning unit	1 ^b
Hydricsoils	Hydric soils	Hydric soils (SSURGO)	Indicator of conditions suitable for potential wetland development	Use Soil Data Viewer to generate Hydric Rating by Map Unit, Select hydric, partially hydric soils, Identity to planning unit and calculate square miles per planning unit	1.5 ^b
BIODIVERSITY					
AllSGNCWet	Species in Greatest Need of Conservation in wetland buffer	SGCNs (WVDNR)	Identify and prioritize known locations of rare, endangered or threatened species	Select features that are G1-G3, S1-S3, Federally listed, Clip to wetland buffer, Spatial Join to get number per planning unit	1.5
SpeciesPredict	Species diversity prediction index	Ecological Land Units (TNC - ERO)	Not considered in final analysis	Export tables to Excel, calculate # geology classes/elevation range/hectares calcareous bedrock per planning unit, normalize data, roll up into index by planning unit	0
CalcBedWet	Calcareous bedrock in wetland buffer	Ecological land units (TNC - ERO)	Contributes to soil structure and topography that support a variety of vegetative and animal species; partial predictor of rare species	Select polygons where GEOL_DESC = Calcareous sed/metased; Mod calcareous sed/metased, Clip to wetland buffer, Identity to planning unit and Dissolve to get square miles per planning unit	1
KarstWet	Karst in wetland buffer	Karst features (WVGES)	Not considered in final analysis	Clip to wetland buffer, Identity to planning unit and Dissolve to get square miles per planning unit	0 ^d

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
NEHabWet	NE terrestrial habitat types in wetland buffer	NE terrestrial habitat types (TNC - ERO)	Higher diversity of habitat types leads to greater species diversity	Convert raster to polygon, Clip to wetland buffer, Identity to planning unit and Dissolve to get count per planning unit	1
NNISWet	Non-native invasive species in wetland buffer	Non-native invasive species (WVDA/WVDNR)	Non-native invasive species displace natives; alter food webs	Clip to wetland buffer, Spatial Join to get number per planning unit	1.5
Infected	Pest/pathogen infected counties	Quarantined/Infested/ Infected counties (WVDA)	Not considered in final analysis	Sum number per county, Identity to planning unit and Dissolve to get mean per planning unit	O ^d
WETLAND HABITAT					
NatcoverWet	Natural Cover in wetland buffer	LULC 2009 (WVU NRAC)	Functional contribution in terms of water storage and filtration	Convert raster to polygon, Select Codes 41, 42, 43, 52, 71, 90, 95, Clip to wetland buffer, Identity to planning unit, Dissolve to get square miles per planning unit	2
AgWet2	Agriculture in wetland buffer	2009 LULC (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 82, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	1
GrazeWet2	Grazing in wetland buffer	2009 LULC (WVU NRAC)	Source of sedimentation	Convert raster to polygon, Select features where Value: 81, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	1
DevelopedWet2	Development in wetland buffer	2009 LULC (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, Select features where Value: 20, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	1
WetForestPatchMax	Largest forest patch in wetland buffer	Forest Patches (TNC)	Not considered in final analysis	Select patches >100 acres, Clip to wetland buffer, Identity to planning unit and Dissolve to get maximum (in square miles) forest patch per planning unit	0 ^a
WetForestPatchMean	Mean forest patch in wetland buffer	Forest Patches (TNC)	Larger forest patches provide more habitat for wetland organisms, greater sediment retention and pollutant filtration	Select patches >100 acres, Clip to wetland buffer, Identity to planning unit and Dissolve to get mean (in square miles) forest patch per planning unit	1
AllWellsWet	Wells within wetland buffer	Oil and gas wells (WVDEP)	Fragmenting features within the landscape	Spatial join to get number per planning unit	1.5

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
ActiveSurfaceWet2*	Active surface mining in wetland buffer	LULC 2009 Mined lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP)	Source of sediments and other pollutants	Merge mining polygons, identity to planning unit and calculate square miles per planning unit	2
LegacySurfaceWet	Legacy surface mining in wetland buffer	LULC 2009 reclaimed mine lands (WVU NRAC); Abandoned mine lands (WVDEP)	Source of sediments and other pollutants	Merge mining polygons, identity to planning unit and calculate square miles per planning unit	1
RoadsRRWet	Roads/railroads in wetland buffer	Roads (WVDOT); Railroads (WVDNR)	Fragmenting features within the landscape	Merge shapefiles, Clip to wetland buffer, Identity to planning unit and calculate miles per planning unit	1
CulvertsWet	Culverts in wetland buffer	Road/railroad crossings (WVFO generated)	Not considered in final analysis	Select streams size class 1a and 1b, generate points for intersection of streams and roads/railroads, spatial join to get number per planning unit	0
EnergyWet	Energy lines in wetland buffer	Energy transmission lines (Ventyx)	Not considered in final analysis	Identity to planning unit and calculate miles per planning unit	0
PipeWet	Pipelines in wetland buffer	Pipelines (Ventyx)	Not considered in final analysis	Identity to planning unit and calculate miles per planning unit	0
BldgsWet	Buildings in wetland buffer	Structure points (WVSAMB)	Not considered in final analysis	Spatial join to get number per planning unit	0 ^b
PROTECTED LANDS					
UnsecnatcoverWet	Natural cover in wetland buffer within unsecured lands	LULC 2009 (WVU NRAC)	Not considered in final analysis	Convert raster to polygon, select codes 41, 42, 43, 52, 71, 90, 95, erase by secured lands, identity to planning unit and calculate square miles per planning unit	0
GAP1Wet	GAP Status 1 in wetland buffer	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 1, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	O ^f
GAP2Wet	GAP Status 2 in wetland buffer	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 2, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	0 ^f

Final Report

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
GAP3Wet	GAP Status 3 in wetland buffer	Secured lands (TNC)	Not considered in final analysis	Select features where value GAP_STATUS: 3, Clip to wetland buffer, Identity to planning unit and calculate square miles per planning unit	O ^f

Uplands

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
HABITAT CONNECTIVITY					
LgstForest	Largest intersecting forest block	Forest patches (TNC)	Not considered in final analysis	Select forest patches >100 acres; Create shapefile from forest patches layer crossed by/within watershed outline; calculate geometry, identity to planning unit, dissolve to max forest patch size	0
ForestSize	Mean intersecting forest block	Forest patches (TNC)	Large forest blocks provide more habitat for greater species diversity	Select forest patches >100 acres; Create shapefile from forest patches layer crossed by/within watershed outline; calculate geometry, identity to planning unit, dissolve to mean forest patch size	2
LocInt	Mean local integrity score	Local integrity (TNC - ERO/PAFO)	Measure of local connectedness of landscape	Convert raster to polygon; Identity to planning unit, dissolve to mean gridcode	1.5
Developed1*	Development	LULC 2009 (WVU NRAC)	Structures and roads eliminate and fragment habitat	Identity to planning unit and Dissolve to get total square miles per planning unit	1.5
AllRdRail	Roads/railroads	Roads (WVDOT); Railroads (WVDNR)	Potential fragmenting feature	Identity to planning unit and Dissolve to get total miles per planning unit	1
Energy	Energy transmission lines	Energy transmission lines (Ventyx)	Potential fragmenting feature	Identity to planning unit and Dissolve to get total miles per planning unit	0.5

Final	Report
-------	--------

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
Pipe	Pipelines	Pipelines (Ventyx)	Potential fragmenting feature	Identity to planning unit and Dissolve to get total miles per planning unit	0.5
Wind	Wind turbines	Wind turbines (TNC - PAFO)	Potential fragmenting feature	Spatial Join to get number per planning unit	0.5
Bldgs	Buildings	Structure points (WVSAMB)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^{a,b}
Towers	FCC Towers	Towers (WVGISTC)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^a
AllWells	Wells	Oil and gas wells (WVDEP)	Potential fragmenting feature	Spatial Join to get number per planning unit	1
ActiveSurface1*	Active surface mining	LULC 2009 Mined lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP)	Eliminates and fragments habitat	Merge mining polygons, Identity to planning unit and calculate to get square miles per planning unit	1.5
SurfaceCoalProd	Coal production (2000-2010)	US EIA	Not considered in final analysis	Calculate cumulative mine production totals in Excel, Join table, distribute by percent area active mining per county, calculate per planning unit	0ª
MinOps	Mineral operations	USGS	Not considered in final analysis	Spatial Join to get number per planning unit	0
Timber1	Timber harvesting	Timber operations (WVDOF)	Temporarily fragments and reduces quality of forest habitat	Identity to planning unit and Dissolve to get total square miles per planning unit	0.5
Landfill	Landfills	Landfills (WVDEP)	Not considered in final analysis	Spatial Join to get number per planning unit	0 ^{b,d}
HABITAT QUALITY					
Hetero	Heterogeneity	ERO/PAFO	Heterogeneous landscapes have high potential for species diversity	Convert raster to polygon; Identity to planning unit, dissolve to mean grid code	2

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
FRCC	Vegetation altered from reference condition	Fire Regime Condition Class (LANDFIRE)	Not considered in final analysis	Convert raster to polygon; Create new layer from gridcode =1; Identity to planning unit, dissolve to get total square miles per planning unit	0 ^g
NatCover	Natural cover	LULC 2009 (WVU NRAC)	Natural cover indicates less disturbance, higher quality habitat for native species	Convert raster to polygon; Select features where Value: 41,42,43,71,92; Identity to planning unit and calculate sqare miles per planning unit	2
Karst	Karst features	Karst geology (WVDNR)	Not considered in final analysis	Identity to planning unit and Dissolve to get total square miles per planning unit	0 ^d
ActiveSurface2*	Active Surface mining	LULC 2009 Mined lands (WVU NRAC); Valley Fills/Refuse Structures (WVDEP)	Eliminates and fragments habitat	Merge mining polygons, Identity to planning unit and calculate to get square miles per planning unit	1.5
LegacySurface	Legacy Surface mining	Appalachian Voices/TNC digitized shapefile	Mine sites represent poor to sub- optimal quality habitat due to altered topography, soil structure, and vegetation	Merge mining polygons: non-active WVFO generated mining from aerials/topo; abandoned mine lands	1
Timber2	Timber harvest	Timber operations (WVDOF)	Temporarily fragments and reduces quality of forest habitat	Identity to planning unit and Dissolve to get total square miles per planning unit	1
Ag	Agriculture	LULC 2009 (WVU NRAC)	Eliminates native species and original vegetation structure; alters soil structure and contributes to soil loss; not as destructive as development	Convert raster to polygon, Select features where Value: 82, Identity to planning unit and calculate square miles per planning unit	1
Graze	Grazing	LULC 2009 (WVU NRAC)	Eliminates native species and original vegetation structure/habitat; not as destructive as row-crop agriculture or development	Convert raster to polygon, Select features where Value: 81, Identity to planning unit and calculate square miles per planning unit	1

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
Developed2*	Development	LULC 2009 (WVU NRAC)	Structures and roads eliminate and fragment habitat	Convert raster to polygon, Select features where Value: 20, Identity to planning unit and calculate square miles per planning unit	1.5
BIODIVERSITY					
AllSGNCUp	Species in Greatest Need of Conservation	SGCNs (WVDNR)	Identify and prioritize known locations of rare, endangered or threatened species	Select features that are G1-G3, S1-S3, Federally listed, Spatial Join to get number per planning unit	1.5
NEHab	Northeast terrestrial habitat types	NE terrestrial habitat types (TNC - ERO)	Higher diversity of habitat types leads to greater species diversity	Convert raster to polygon, Identity to planning unit and Dissolve to get count per planning unit	1
SpeciesPredict	Species diversity prediction index	Ecological Land Units (TNC - ERO)	Not considered in final analysis	Export tables to Excel, calculate # geology classes/elevation range/hectares calcareous bedrock per planning unit, normalize data, roll up into index by planning unit	0
CalcBed	Calcareous bedrock	Ecological land units (TNC - ERO)	Contributes to soil structure and topography that support a variety of vegetative and animal species; partial predictor of rare species	Select features where GEOL_DESC = Calcareous sed/metased; Mod calcareous sed/metased, Identity to planning unit, Dissolve to get square miles per planning unit	1
NNIS	Non-native invasive species	Non-native invasive species (WVDA/WVDNR)	Non-native invasive species replace natives in the landscape; alter food webs for animals that depend upon native plants for food and habitat	Spatial Join to get number per planning unit	1.5
PctLoss	Pests and Pathogens	Percent basal area loss (USFS)	Reduces native plant populations and the animal species that depend on them	Convert raster to polygon, clip to watershed; Identity to planning unit, calculate geometry; Add field Pct_PU, calculate (area of fragment)/(area of planning unit); Add field Wtd_Value, calculate pct_PU*gridcode for weighted value per planning unit. Dissolve by planning unit to sum Wtd_Value	2

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
GypsyMoth	Pests and Pathogens	Percent basal area loss (USFS)	Not considered in final analysis	Convert raster to polygon, clip to watershed; Identity to planning unit, calculate geometry	0 ^a
HrdDecline	Pests and Pathogens	Percent basal area loss (USFS)	Not considered in final analysis	Convert raster to polygon, clip to watershed; Identity to planning unit, calculate geometry; Add field Pct_PU, calculate (area of fragment)/(area of planning unit); Add field Wtd_Value, calculate pct_PU*gridcode for weighted value per planning unit. Dissolve by planning unit to sum Wtd_Value	0ª
RdOakDecline	Pests and Pathogens	Percent basal area loss (USFS)	Not considered in final analysis	Convert raster to polygon, clip to watershed; Identity to planning unit, calculate geometry; Add field Pct_PU, calculate (area of fragment)/(area of planning unit); Add field Wtd_Value, calculate pct_PU*gridcode for weighted value per planning unit. Dissolve by planning unit to sum Wtd_Value	0ª
Infected	Quarantined/Infested/Infected counties	Quarantined/Infested/Infected counties (WVDA)	Not considered in final analysis	Sum number per county, Identity to planning unit and Dissolve to get mean per planning unit	0 ^d
EcoSubunits	Ecoregional subsections	Ecoregional subsections (TNC)	Not considered in final analysis	Identity to planning unit, dissolve to get count per planning unit	0 ^g
PROTECTED LANDS					
GAP1	Secured lands	TNC	Not considered in final analysis	Select features where value GAP_STATUS: 1, Identity to planning unit and calculate square miles per planning unit	O ^f
GAP2	Secured lands	TNC	Not considered in final analysis	Select features where value GAP_STATUS: 2, Identity to planning unit and calculate square miles per planning unit	O ^f

Final Report

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
GAP3	Secured lands	TNC	Not considered in final analysis	Select features where value GAP_STATUS: 3, Identity to planning unit and calculate square miles per planning unit	O ^f

Consolidated Analysis

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
ENERGY					
UnminedPerbd	Potential coal mining activity	Unmined coal beds (WVGES); Mining permit boundary (WVDEP)	Assumed that unmined coal within existing permits would have high potential to be mined in the future	Normalize raster 0-100, reclass based on data, sum with relevant data layers	2
UnminedCoal	Potential coal mining activity within active mine permit boundary	Unmined coal beds (WVGES)	Used to estimate potential for future coal mining activity, assuming all coal beds are mineable	Normalize raster 0-100, reclass based on data, sum with relevant data layers	2
MSWellPot	Potential Marcellus Shale gas well development	Marcellus Shale thickness (WVGES)	Used to estimate potential for future gas well development, assuming greater thickness indicates greater potential	Normalize raster 0-100, reclass based on data, sum with relevant data layers	2
WindPot	Potential wind energy development	Wind energy potential (NREL)	Used to estimate potential for wind development	Select polygons with values > 3, Normalize raster 0-100, reclass based on data, sum with relevant data layers	2
PropWind	Proposed wind turbines		Known locations of proposed future wind turbines	Spatial join to get number per HUC12	1
PropEnergy	Proposed energy transmission lines	Ventyx	Known locations of proposed future energy lines	Identity to HUC12, calculate length in miles per HUC12	1
PropPipe	Proposed gas pipelines	Ventyx	Known locations of proposed future energy lines	Identity to HUC12, calculate length in miles per HUC12	1
PropPower	Proposed power plants	Ventyx	Known locations of proposed power plants	Spatial join to get number per HUC12	1
Geothermal	Potential geothermal energy development	Geothermal energy potential (SMU Geothermal Lab/Google Earth)	Used to estimate potential for geothermal energy development	Select polygons with Temp (at depth 7.5 km) values > 150 degrees, Normalize raster 0- 100, reclass based on data, sum with relevant data layers	1

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight	
POPULATION/ DEVELOPMENT	-					
PopProject	Projected future population	County population estimates to 2030 (Christiadi 2011)	Estimates of future population growth as indicator of possible future land use scenarios (surrogate for potential increase in developed lands and infrastructure)	Join Excel table of data by county name, Convert to raster based on percent change, Normalize raster 0-100, reclass based on data, sum with relevant data layers	1	
FutureGrowthArea	Potential future growth scenarios	Socioeconomic Data Forecasts - 2030	Zoned areas of future development at various intensities	Digitize polygon of projected growth, Normalize raster 0-100, reclass based on data, sum with relevant data layers	1	
DevelopPot	Potential development areas	Primary and Secondary Growth Areas (WVRPDC Region VI)	Projected economic development growth corridor	Digitize polygons of zoned future development, Normalize raster 0-100, reclass based on data, sum with relevant data layers	1	
CLIMATE CHANGE						
Resiliency	Resiliency	Resiliency (TNC - ERO/PAFO)	Resilient landscapes have greater potential to preserve species diversity in the face of climate change due to landscape heterogeneity and permeability	Normalize raster 0-100, reclass based on data, sum with relevant data layers	1	
CurrDens	Regional flow	Current density/Regional flow (TNC - ERO/PAFO)	Identify areas with high permeability and concentrated key linkages for species movement/adaptation to climate change	Normalize raster 0-100, reclass based on data, sum with relevant data layers	0	
ClimateWizPrec	Potential future precipitation changes	Climate Wizard (TNC)	Estimates of future increases in precipitation, which will affect species and vegetation distribution	Generate map from Climate Wizard for: Medium Emissions, 2050s, precipitation change, annual, digitize, identity to HUC12 and dissolve for mean precipitation change	0 ^g	
ClimateWizTemp	Potential future temperature changes	Climate Wizard (TNC)	Estimates of future increases in temperature, which will affect species and vegetation distribution	Medium Emissions, 2050s, temperature change, annual	0 ^g	
PRIORITY INTEREST AR	PRIORITY INTEREST AREAS					
AquaPort	TNC aquatic portfolio streams	Aquatic portfolio (TNC)	Identify streams of known high value	Data intended as informational overlay, no analysis conducted	1	

Final Report

Metric Name	Metric Description	Data (Source)	Rationale	GIS Process	Weight
TerrPort	TNC terrestrial portfolio sites	Terrestrial portfolio (TNC)	Identify land of known high value	Data intended as informational overlay, no analysis conducted	1
USFSProBndy	USFS priority areas	National Forest proclamation boundary (USFS)	Identify land that the Forest Service has deemed a priority to acquire	Data intended as informational overlay, no analysis conducted	1
NPS	National Park Service priority areas	NPS priority areas (NPS)	Identify land that NPS has deemed a priority in future planning	Data intended as informational overlay, no analysis conducted	1
DOFPrior	WV Division of Forestry priority areas	WVDOF	Identify HUC12s that WV Division of Forestry has analyzed as high priority for water quality	Select poygons where layScr11 > 20. Data intended as informational overlay, no analysis conducted	1

*Metrics that are identified as "critical metrics" within an index (see Section 3.3.3 for detailed explanation)

^a Highly correlated (r = 0.75- 1.00) with one or more other metrics

^b Expert opinion/Literature

^c Metric with different spatial extent considered more appropriate; e.g., grazing in riparian buffer instead of grazing in entire planning unit

^d Metric insufficiently represented among planning units

^e Project team decision

^fData effectively represented by or captured within other metric or index

^g Data at insufficient resolution for scale of analysis (e.g. county or regional level data)

Appendix C: Detailed Full Project Timeline

Month	Activity
March 18, 2011	Grant award signed by DEP
April 1, 2011	Sub-award agreement between DEP and TNC, project timeline starts
April 15, 2011	Quarterly report (1) for January, February, March due
June 1, 2011	Draft assessment methodology completed, Baseline data set identification and compilation
	begins for 2 watersheds, QAP Plan developed and submitted for review
June 13, 2011	Technical Advisory Team 1 st meeting
July 15, 2011	Quarterly report (2) for April, May, June due
Oct 1, 2011	QAP Plan completed, Baseline data collection completed
Oct 15, 2011	Quarterly Report (3) for July, August, September submitted
Oct 26, 2011	1 st Expert Workshop on 2 watersheds completed, Consolidated analysis data development and revisions begin
Jan 15, 2012	Quarterly Report (4) for October, November, December submitted
Jan 31, 2012	Consolidated analysis data development and revisions completed, 2 nd expert workshop held,
	strategy development completed in 2 watersheds
March 1, 2012	Draft assessments completed in 2 watersheds
April 5, 2012	Decision maker and end user workshops held. Final revisions made and sent out for peer
	review.
April 15, 2012	Quarterly Report (5) for January, February, March submitted
June 15, 2012	Quarterly Report (6) for April, May, June submitted
June 29, 2012	Peer review completed. Final assessment reports on 2 watersheds completed, assessment
	methodology report completed. Begin Baseline data collection on remaining 3 watersheds.
Sept 1, 2012	Baseline data collection completed on remaining 3 watersheds
Oct 11, 2012	1 st expert workshops on remaining watersheds
Oct 15, 2012	Quarterly Report (7) for July, August, September submitted
Jan 1, 2013	Draft assessments completed in remaining 3 watersheds
Jan 8, 2013	Revisions completed in remaining 3 watersheds, draft web tool demonstrated, 2 nd expert
	workshops held
Jan 15, 2013	Quarterly Report (8) for October, November, December submitted
April 15, 2013	Quarterly Report (9) for January, February, March submitted
May 8, 2013	Decision maker and end user workshops held. Final revisions made on 3 watersheds
Dec 31, 2013	Final assessment reports on all 5 watersheds completed, assessment methodology report revisions made. Final report and all completed deliverables, including interactive first version of web tool, submitted

Appendix D: Workshop Notes and Attendees

West Virginia Watershed Assessment Pilot Project Gauley, Upper Guyandotte, and Little Kanawha Watersheds First Expert Workshop Summary October 10-11, 2012 Bridgeport, West Virginia

Workshop Objectives

The goals of this workshop were to:

- 1) present the recently developed objective method of watershed classification and obtain experts' opinions and suggestions;
- 2) present the results of the condition assessments for the final three of five pilot watersheds: the Gauley, Upper Guyandotte, and Little Kanawha, and request feedback from the experts on any knowledge of issues in these watersheds; and
- 3) request expert feedback on desirable features for the interactive web tool that will be developed for the assessment.

Workshop Day 1 October 10, 2012

Presentation Summary

The workshop began with a review of the project goals and timeline, as well as a brief review of the watershed assessment structure: landscapes, indices, and metrics. The team then presented the new objective method of classifying the results, followed by reports on the assessment results for the Upper Guyandotte and Gauley watersheds. An open discussion followed each presentation, during which experts who had not attended previous workshops requested further information, and experts familiar with the project offered suggestions and additional questions. Overview maps of the Upper Guyandotte and Gauley watersheds were displayed for reference. After the watershed presentations, the Team's final list of metrics and weights was reviewed with the experts.

Objective Methodology

Ruth Thornton, TNC

Ruth presented the project background and a summary of the methodology. A particular emphasis was the presentation of the objective ranking of planning units, for which the Team used the DEP's Reference and Stressed catchments to determine the values for all metrics in the three models. This resulted in the establishment of thresholds to place planning units into four objective categories: Very Good, Good, Fair, and Poor.

A list of metrics and the objective thresholds used was provided to the experts. Handouts showing results maps for the Little Kanawha watershed illustrated the differences between the objective and relative methods of classification, which ranks each HUC12 or NHDPlus catchment relative to the others within the HUC8 watershed.

Overview of Upper Guyandotte Watershed Results

Diane Packett, TNC

There is a large amount of active and legacy surface mining, as well as underground mining, in the Upper Guyandotte watershed, especially in the northwest and southeast areas. There are many wells, but little concentrated development except in the Logan area. Most of the major tributaries of the Guyandotte River are impaired. There are GAP 2 & 3 Protected Lands, including several WMAs and one state park.

Comments: Experts noted that the Coal Field Expressway and King Coal Highways are currently under construction and can be added to the Consolidated Analysis. An expert also suggested the possibility of including the Hatfield – McCoy ATV trails.

Overview of Gauley Watershed Results

Misty Downing, TNC

The Gauley watershed is notable for a large area of undeveloped Wilderness Area, and the large Meadow River wetland complex in the southern portion. There is some surface and underground mining, and gas development occurs in the northwestern portion of the watershed. Experts noted that acid precipitation is a current and future threat to the unbuffered soils, especially in the Cranberry Wilderness.

Metrics and Weighting: Discussion Summary

Ruth Thornton, TNC

After introducing the first two watersheds, the team reviewed with the experts the final list of metrics used for each condition index for each of the three landscape models (Streams, Wetlands, and Uplands) along with their weights in the assessment. Experts were provided with a list of metrics that were dropped from, and retained in, the analysis (based on expert opinion, correlation, regression, and Principal Components Analysis).

TNC then facilitated a breakout session with two groups to discuss the metrics, thresholds, weighting, and categorization methods. Specific questions that participants were asked to consider were:

- Are thresholds defined appropriately?
 - Is the Very Good/Good threshold too stringent? Very difficult to attain.
 - Is the Poor/Fair threshold too stringent?
 - Should an alternate definition (i.e., quantiles, other?) be used where thresholds don't work?
- How should metrics with missing thresholds be handled?
 - Keep as presence/absence
 - Assign intermediate very good/good and poor/fair categories instead of forcing into good and fair only
 - o Assign arbitrary/"best guess" thresholds for all thresholds

The feedback and recommendations from the experts during the roundtable discussion and breakout session are summarized by topic in the following sections.

Landscapes and Indices

Streams Water Quality Index. The experts had a number of opinions on the weighting of the land cover metrics used in the calculation of the Streams indices.

- The "positive" and "negative" landscape metrics do not necessarily have to be weighted equally; for example, 1 acre of urban development has a far more negative impact on stream quality and function than 1 acre of natural cover has a positive impact.
- Much of the land conversion in West Virginia occurs in the riparian zone, so the weight of the riparian metrics should reflect that in some indices they are more important to stream quality than land cover in the catchment.
- Upland conversion affects streams only within 300' of stream so that the riparian buffer captures all of the upland area that is necessary for stream health.
- Riparian land condition is always the driving factor in stream health except in the cases of mining and urbanization.
- Perhaps weight the riparian land cover higher than the catchment-scale land cover (i.e. 0.75/0.25).

The Team's interest in retaining information at both riparian and catchment scales led to the following compromises:

- Use the riparian area metrics for SWQ land cover, instead of full planning unit, although they are highly correlated;
- Retain wells, surface and underground mining, and impervious surface for the entire catchment.

Suggestions from the experts:

- Create a "Riparian Area" metric in the Streams Water Quality Index (SWQ), because the amount of riparian area is an important water quality indicator. Response: The Team has essentially captured this with the NatCoverRip (Riparian Natural Cover) metric since most of the riparian area is forested.
- Redefine the headwaters metric, since most of the catchments currently contain headwaters, which the Team has defined as size class 1a and 1b streams. They should be ephemeral or intermittent streams of first order or lower, with a drainage area of ~2000 acres. Response: The Team checked the streams dataset, and agreed that only size class 1a should be used to define headwaters.

Questions from the experts:

How were the impervious surface scores computed? Response: The Team used Mike Strager's 2009 land cover data, and the NLCD 2006 impervious cover data. Experts suggested looking at impervious scores of different land uses, and assigning impervious equivalencies to the Strager data to see how they look. Response: the Team researched impervious surface calculation methodologies and determined that using the NLCD 2006 impervious cover data was the most accurate method for determining average percent imperviousness.

• Is WV's impaired streams data based on more than one dataset? Response: The Team used the DEP's 303(d), TMDL, and AMD streams data.

Other recommendations and summary points:

- Several of the metrics are, in the Experts' opinion, important enough that they should determine the entire index: pH, imperviousness, surface mines, and specific conductivity for the SWQ index. If any two of them are poor, the SWQ index should be poor; if any two of them are fair, the entire index should be fair. This idea is further elaborated in the Categorization section below.
- Perhaps the GLIMPSS score should not be the metric used to indicate good water quality in regression models. The team should determine whether there are high GLIMPSS scores in poor quality areas to ensure that GLIMPSS scores do correspond to water quality parameters measured in these watersheds.
- Double check the impervious thresholds because they are very low. Check the Potomac ELOHA study for their treatment of impervious surface. Response: the Team checked the imperviousness threshold numbers, and they are correct, as determined by the method of using reference and stressed catchments.
- If the impervious surface thresholds come from the Reference Streams catchments, then use the Tier 1 streams to determine the Very Good threshold, and the Tier 2 streams to determine the Good threshold. Response: to keep the imperviousness metric consistent with other metrics, this suggestion was not incorporated. Since reference and stressed results were so low, thresholds from the literature were used instead.
- Some of the experts believed that urban development has the same effective impact as surface mining, and so perhaps should have the same thresholds. Response: the objective method of threshold calculation based on stressed and reference catchments worked well for the development metric, and was therefore used. Thresholds for surface mining were adopted from expert's suggestions during the workshop and a review of available literature.

Streams Water Quantity Index. Experts recommended that the Large Quantity Users (LQU) on small streams metric should be weighted as high as 2, since water is often consumed and not returned. Response: The Team increased the weight of this metric to 2.

Only large quantity users with permits are captured by the LQU metric, and gas drilling is not. This is because the water is often withdrawn in planning units other than where the well is located. The Team and Experts are not aware of any data for discharge to show what is coming in to the streams, to balance what is withdrawn.

Streams Hydrologic Connectivity Index. There was a question from the experts regarding the purpose of the Power Plants metric. Response: It indicates a temperature barrier to aquatic life. One expert observed that, technically, the water should be cooled before being released into the stream, but some plants like Mt. Storm are discharging 98 degree water. Another commented that the high temperature is getting dissipated quickly with the rest of the stream and it doesn't seem like a thermal barrier should last long.

The experts recommended increasing the weight of road/rail and culverts metrics. Response: the Team incorporated this recommendation.

Streams Biodiversity Index. The Team requested expert opinion on whether a planning unit with a large number of rare species should automatically be put into a higher category as a priority for protection, even if its score is "Fair" or "Good." The Experts did not venture an opinion on this.

The Experts recommended using the maximum number of taxa vs. median number taxa to indicate macroinvertebrate diversity. Response: the Team incorporated this recommendation.

Streams Riparian Habitat Index. The Experts asked for a definition of riparian area. Response: It is based on TNC's Active River Area, with a 120-m buffer on the NHD 24k streams, and encompasses the floodplain and riparian wetlands.

There was extensive discussion if the Team should use Emily Bernhardt's published thresholds for surface/legacy mining. It was agreed that they are conservative numbers determined in the southern coalfields. In contrast, data from Todd Petty covers the entire state, and is likely more relevant to this project.

Other recommendations:

- Increase the weights of road/rail and active surface mining in the riparian area. Response: The Team increased the weight of surface mining to 2 and road/rail to 1.5.
- One expert suggested that development and active surface mining are of greater importance in the riparian area than roads, so their weights should be higher. Response: the Team incorporated these recommendations.

Wetlands Water Quality Index. Question from the Experts: Should the wetland water quality metrics be the same as those for streams? Response: The Team is trying to capture more of the wetland functions: a wetland may be of "poor" quality but still serve to moderate flood events. Likewise, poor quality of water entering a wetland may make its functions even more valuable for water purification. It was agreed that the presence of any wetlands is good, and that even poor quality may be worth protection and/or restoration.

Uplands Landscape. The major issue the Team and the Experts noted with the Uplands model results was that there are few if any HUC12 planning units that fall into the "Poor" or "Very Good" categories.

The Experts had several observations:

- It is possible that these three watersheds really do have little variation among the planning
 units. It would be interesting to analyze a watershed containing a heavily impacted area, such as
 Wheeling, as well as a watershed expected to be pristine, to see if some of those planning units
 are ranked as Poor or Very Good by the objective method. Response: The Team analyzed the
 Monongahela watershed and presented the results on Day 2.
- Depending on whether the goal is to assess current watershed condition or restoration potential, land uses could be weighted differently. From a hydrology perspective, grazed lands are better than cropped areas, and both are better than development because they are restorable. Response: Since the SWQ index assesses the current condition of the watershed,

weights for grazed, agricultural, and developed areas in the riparian area were kept at 1. The web tool will include these land uses as overlays so users can evaluate restoration potential based on local conditions.

- Habitat fragmentation by roads is potentially a more complicated issue than represented by road presence/absence, and road buffer acreage (i.e. road classes) instead of mileage could be used to represent this. Response: The Team considered this during the assessment methodology development. It is already captured in the Forest Size metric, which uses hierarchical road buffers as forest fragmentors. Another factor is that road size effects are often taxon-specific: birds, mammals, and seeds may travel across highways, where amphibians and insects may not.
- Gravel roads have different impacts depending on their purpose, location, and level of use, so their incorporation into the analysis is potentially very complex. Response: Roads are not separated by surface type because of the complexity of the issue and uncertainty of effects on the metrics.
- Gas wells or surface mines are often located on legacy mine lands: should this be reflected in the analysis? Re-mining often creates fresh impacts, and revegetated mines may no longer impact streams directly. Response: The Team has addressed this by separating surface and legacy mining in the habitat metrics, and combining them in the water quality metrics.
- Experts noted that GAP 3 lands may still be subject to resource extraction, and GAP 2 lands may still experience the effects of previous land uses.

Uplands Habitat Connectivity and Uplands Habitat Quality Indices. Because land conversion is such a large driver in these indices, the Team and Experts discussed the idea of "killer metrics": the situation in which a catchment contains so much development or surface mining that it is inappropriate for either conservation or restoration, regardless of its other attributes. This idea is further elaborated in the discussion of Categorization and Thresholds below.

Uplands Biodiversity Index. Concerns with the Biodiversity Index were reiterated: it emphasizes rare species, and the available data on rare and invasive species are spatially biased and do not indicate areas that were sampled but no targets were found. Response: Unfortunately, there are no available alternatives.

The Percent Basal Area Loss metric is weighted very high, and in some cases appears to drive the results of the biodiversity index. Positive attributes of this metric are that the results cover a wide range of values and are appropriate for the watershed scale (unlike some datasets that are county-wide). The predicted basal area loss metric might also be useful in deciding where to undertake treatment or restoration. The experts suggested retaining this metric if the Team is confident in the models used to generate the predictions. Response: The team will review the literature on the National Insect and Disease Risk Maps.

Protected Lands Index. The Team requested expert opinion on how to deal with the Protected Lands Index for each landscape. Most planning units contain no protected lands in categories GAP 1, 2 and 3, bringing down the overall model scores. Should this index be removed from the analysis?

Opinions varied regarding retention of the Protected Lands Index, but it was generally agreed that this information is most important for establishing priorities for conservation and restoration, so it depends upon whether the web tool will be used for condition assessment or for prioritization. Areas adjacent to protected lands are especially important in this context. Ideally a metric might be a cost-weighted distance from the planning unit to the nearest protected land, but this would be very complex because many different types of obstacles might lie between them; i.e., an interstate highway vs. a gravel road. Response: Because of the complexity and uncertainty of distance effects from different land uses, this suggestion has not been incorporated into the model.

One suggestion was to use the Protected Lands layer as an overlay to the analysis, rather than incorporating it. This would allow identification of adjacent areas to be targeted for protection or restoration. The condition of the protected lands, especially GAP 1 or 2, would also be an indication of the potential quality to which newly acquired lands could be restored. Response: The web tool will include protected lands as an overlay to allow users to evaluate this factor for their uses.

Another suggestion was to incorporate a presence/absence type metric to indicate protected lands and those immediately adjacent so that they receive a slightly higher condition score. Response: this is how the model is currently set up.

Metric and Index Categorization and Thresholds

The objective results for the three watersheds show little variation; most of the HUC12s or catchments were in the "Fair" or "Good" categories. An expert agreed that seeing only two categories displayed on a map suggests that the analysis is not sufficiently refined. It was also suggested that the many metrics/indices were cancelling each other out, especially in the case of the HUC12s. Another possibility is that the planning units in these three watersheds really are "Fair" and "Good" compared with all the others in the state. Experts suggested looking at a watershed that is expected to be highly impacted, such as in the Wheeling area, to see if any of the planning units fall into the "Poor" category. Response: As summarized below, the Team re-analyzed the more heavily impacted Monongahela watershed with the objective method and found more variability in this watershed.

It was suggested that the "Poor" results category should be renamed to impartially reflect the low numerical results, without implying that an area is unsuitable for restoration, since some organizations may specifically target highly impacted areas such as AMD-impaired streams for restoration. Suggestions for renaming the category included:

- Changing Fair and Poor to Impaired and Severely Impaired or Degraded and Severely Degraded
- Changing Poor to Restorable at Cost
- Adding a "Not Recoverable" category for the lowest-scoring planning units, which would include intensely urban areas, to distinguish from those areas that could be lifted from Poor to Fair for ecological mitigation credits

Experts did not recommend adding any additional categories, although there may be a way to flag individual metrics (or otherwise make data available to users) that either indicate that a planning unit is not recoverable, or that if improved might make it a target for restoration. Any terminology should be explicitly and prominently defined in the documentation of the interactive web tool or in the watershed

assessments. Response: the Team decided to keep the terminology as is with explicit definitions in any documentation.

As an extension to the discussion of relative metric weights, the Team and Experts began developing the idea of "killer metrics:" those metrics that either alone or in combination may have sufficient negative impacts on a planning unit that their value determines the value of the entire index. As an example, the Streams Water Quality index contained four metrics that the Experts believed were sufficiently indicative of stream health that if two or more had "Fair" or "Poor" scores, the entire water quality index should be rated as Poor, overriding other factors: Median pH, Median Specific Conductivity, Impervious Surface, and Surface Mining. Metrics for other indices the Experts identified as "killer metrics" included:

Streams Water Quantity: Impervious surface Streams Riparian Habitat: Development and Active surface mining Wetlands Wetland Habitat: Development and Active surface mining Uplands Habitat Connectivity: Development and Active surface mining Uplands Habitat Quality: Development and Active surface mining

Final Report Workshop Day 2 October 11, 2012

Presentation Summary

The second day of the workshop opened with an overview of the Little Kanawha watershed results and a preliminary analysis of the Monongahela watershed to give an example of results obtained in a more impacted watershed. This was followed by more general discussion of the Wetlands and Uplands landscapes. The floor was then opened to the experts to give their opinions on the features and content of the interactive web tool that will be constructed to present the watershed assessments to various users.

Overview of Little Kanawha Watershed

Diane Packett, TNC

Habitat fragmentation by grazing, development, and roads is more prominent than in the other watersheds. There is very little surface or underground mining, although there are many wells. Most of the major tributaries of the Little Kanawha River are impaired, and biological contaminants/fecal coliform and iron are the predominant impairments. There are GAP 1, 2, and 3 protected lands in the watershed, including several WMAs, two state parks, and one TNC preserve. There was one irregularity on the display map: the absence of the Wells locks & dam; this was a data processing error and has been corrected.

Comments: Experts noted that there are several pollution issues in the Little Kanawha River, and DEP will be starting TMDLs in 2014. Sedimentation from well pads and access roads is an issue due to a shortage of well inspectors and lack of training in sedimentation. They also noted the presence of federally endangered mussels in the Little Kanawha, and speculated on the location of a new DNR wetland conservation area, managed by Ducks Unlimited, next to a Wal-Mart.

Preliminary Analysis, Monongahela Watershed

Misty Downing, TNC

In the previous day's session, it was speculated that the reason that the objective method shows little variability among HUC12 watersheds is that in fact these particular watersheds contain little variability. Experts had suggested running the analysis on a watershed containing an area that is likely to be heavily impacted to determine if appropriate HUC12 watersheds are categorized as poor. Accordingly, Misty Downing subjected the Monongahela watershed to the objective analysis, and found that there is, in fact, greater variability among planning units (from Poor to Very Good) in this more heavily impacted watershed, at both the HUC12 and catchment levels.

Wetlands and Landscape

Ruth Thornton, TNC

The Team requested expert advice on dealing with a troublesome issue in the Wetlands model: currently, having no mapped wetlands in a planning unit places it in the "Poor" category, although there may be hydric soils indicative of past or potential future wetlands. The Wetlands Hydrology index, an

indicator of wetland "potential," incorporates the presence of floodplain and hydric soils. However, hydric soils are inconsistently mapped across the state, and where they are not mapped, the "null" values skew the results.

Recommendations:

- The Team and the Experts were most comfortable with the idea of removing from the wetlands analysis those catchments that do not have an NWI wetland, floodplain, or hydric soils, which indicates that no restoration potential exists. For the HUC12 analysis, it may be advisable to set a "minimum area requirement" so that HUC12s with very few wetland indicators are classified as "null" instead of "poor". Response: The Team incorporated this suggestion by removing planning units without wetlands, floodplains, or hydric soils from the wetlands analysis.
- It may also be possible to "extrapolate" the presence of hydric soils: depending on the stream gradient, there will be a certain percentage of the floodplain that will be hydric. Response: This would likely be very time intensive, and is impractical since soil map units are often inconsistent between counties. There is a DNR project in progress to develop a tool to predict wetland potential; this and other datasets could be incorporated into the model in the future as improved data become available.

Interactive Web Mapping Tool

Ruth Thornton, TNC

It was agreed that the web tool will be used by a variety of groups for different purposes, and it would be desirable to provide a User's Guide with tutorials for different scenarios and levels of information needed: a watershed group writing a grant, in lieu fee mitigation projects, USACE projects, etc. It will be important for users to identify their priorities, and the User's Guide could direct users to the Objective or Relative ranking system that would most suit their purposes. Response: the Team agrees with this recommendation and will develop appropriate tutorials.

Types of maps/processes that could be included in the web tool:

- A step-by-step process for those seeking a protection or restoration site with varying criteria;
- A place-based results map similar to the EPA's Surf Your Watershed tool, in which a user might click on a place in a state map to view HUC12 or catchment results and attributes. This may keep less technically-oriented users engaged;
- A 'hot spots' issues map that someone with funding for particular projects can use to locate sites.

Suggestions for features to include in the tool:

- An example of a use scenario, taking the user from large scale to small HUC12 to catchment
- The ability to save the current search/place within the tool so that the user can resume later
- An ID tool to display the attributes of selected features
- The ability to select desired layers to view and features displayed for the base layer
- Data that was dropped from the analysis but which users could display as overlays if desired.

Response: the Team will work with the web tool developer to incorporate as many of these suggestions as can be accommodated.

Next Steps

Prior to the second expert workshop, the Team will incorporate the metric thresholds and weighting recommendations, including the "killer metrics" and wetland hydrology, into the objective method and re-run the analyses for the Gauley, Little Kanawha, and Upper Guyandotte watersheds. These results will be presented at the second expert workshop with the preliminary Consolidated Analysis results. The Team will also seek expert input on potential strategies for addressing issues identified in the watersheds.

Meeting Attendees

Name	Affiliation	Email	Telephone
Keith Fisher	TNC	Keith_fisher@tnc.org	304-637-0160
Ruth Thornton	TNC	rthornton@tnc.org	304-637-0160
Diane Packett	TNC	dpackett@tnc.org	304-637-0160
Misty Downing	TNC	mdowning@tnc.org	304-637-0160
Amy Cimarolli	TNC	acimarolli@tnc.org	304-637-0160
Rebecca Albert	USACE	Rebecca.M.Albert@usace.army.mil	304-399-5143
Charlie Vannatter	Triad Engineering	cdvanatter@google.com	804-451-8688
Nick Murray	WVDEP	Nick.s.murray@wv.gov	304-926-0499 (1034)
Danny Bennett	WVDNR	Danny.a.bennett@wv.gov	304-637-0245
Mike Whitman	WVDEP	Michael.j.whitman@wv.gov	304-926-0499 (1088)
Brady Gutta	WVWRI	jbgutta@mail.wvu.edu	304-293-7002
Braven Beaty	TNC	bbeaty@tnc.org	
R. Gus Drum	USACE	Richard.g.drum@usace.army.mil	304-399-5851
Dan Bailey	USACE	Daniel.s.bailey@usace.army.mil	304-399-5824

West Virginia Watershed Assessment Pilot Project Upper Guyandotte, Gauley, and Little Kanawha Watersheds Second Expert Workshop Summary January 8-9, 2013 Charleston, West Virginia

Workshop Objectives

The goals of this workshop were to:

- 4) present and compare updated relative and objective method current condition results for the Upper Guyandotte, Gauley, and Little Kanawha watersheds and get expert feedback;
- 5) present overall trends from current condition results for all five project watersheds and discuss potential strategies to address them; and
- 6) present preliminary Consolidated Analysis results for all three watersheds and get expert feedback on the results, methodology, and data recommendations.

Workshop Day 1 January 8, 2013

Presentation Summary

The workshop began with a review of the project objectives and timeline, as well as a brief review of the watershed assessment structure: units of analysis, model structure, landscapes, indices, and metrics. The Consolidated Analysis was introduced, followed by a description of its indices and metrics. The Team presented the updated current condition results for both the relative and objective methods of analysis, with maps of assessment results for all three watersheds. An open discussion around each watershed map followed each presentation, during which experts provided feedback and asked additional questions. Overview maps of the three watersheds were displayed for reference. After the watershed results presentations, the Team presented overall trends that emerged from the initial assessment results, and discussed potential strategies for addressing the identified trends with the experts.

Project Background and Objective Methodology

Ruth Thornton, TNC

Ruth presented the project background and a review of the methodology, including an introduction to the Consolidated Analysis model structure, with a detailed description of the indices and metrics used to determine potential future threats. A detailed review of both the relative and objective methods of analysis was presented, including reference and stressed catchment criteria, how objective thresholds were determined, and the concept of critical metrics (defined as metrics that are crucial enough to cap the overall score of a planning unit regardless of other metrics: the highest score of an index with critical metrics defined is capped by the highest score of the critical metrics, regardless of other metric values). Ruth also introduced the idea of combining the objective and relative ranking methods into a combined results method, which starts with the objective score and then uses the relative ranking results to rank planning units relative to each other within an objective category. Benefits of the combined score

include greater ease of use by presenting only one set of results, while a potential disadvantage would be that some of the detail of the objective and relative rankings would be lost.

A list of metrics, weights, and objective thresholds for the objective analysis was provided to the experts. Results maps for all three watersheds at both the HUC12 and NHDPlus catchment scales for both the objective and relative analyses were provided.

Overview of Upper Guyandotte Watershed Current Condition Results

Diane Packett, TNC

There is a large amount of active and legacy surface mining, as well as underground mining, in the Upper Guyandotte watershed, especially in the northwest and southeast areas. There are many oil and gas wells, but little concentrated development, except in the Logan area. Most of the major tributaries of the Guyandotte River are impaired. There are GAP 2 & 3 Protected Lands, including several WMAs and one state park. A seeming anomaly was presented for feedback by the experts: the overall results in the Wetlands model can differ greatly between the relative and objective methods of analysis. This is a result of the Wetlands Hydrology index, which is the only scored index for planning units without any mapped National Wetlands Inventory (NWI) wetlands but with underlying hydrology such as floodplain or hydric soils, a situation which can produce a low relative quality score but a Very Good objective quality score.

Comments: Experts mentioned that a large scale mitigation bank is being proposed on Pinnacle Creek and is worth noting.

Overview of Gauley Watershed Current Condition Results

Misty Downing, TNC

The Gauley watershed is notable for a large area of undeveloped protected lands in the east (Cranberry Wilderness, Cranberry Glades, etc.) and the large Meadow River wetland complex in the south. Surface mining occurs along the northern and some southeastern ridges of the watershed, and gas well development occurs in the northwest. Urban development is confined to the western part of the watershed, and is most dense along infrastructure such as US Hwy 19 in the northwest and US Hwy 60 and Interstate 64 across the south.

Comments: It was noted that a road along the Cranberry River that divides the backcountry from wilderness is missing from the maps. Experts noted that the underground mining in Nicholas County is not showing up as causing impairments in Streams Water Quality (SWQ). This was explained by the Team as Underground Mining not being a critical metric, and while there are stream impairments for metals in this area, the overall SWQ score was not brought down significantly by these two metrics. Experts noted that some water treatment is happening in this area as well, which may help impairments. Acid deposition and low buffering capacity are probably driving the existing impairments within the headwaters/wilderness areas. Some active mining occurs south of Richwood, and legacy mining along the Williams and Gauley Rivers in the east.

Overview of Little Kanawha Watershed Current Condition Results

Diane Packett, TNC

Threats from habitat fragmentation by grazing and roads are more prominent than in the other watersheds. There is very little surface or underground mining, although there are many oil and gas wells in the center of the watershed. Most of the major tributaries of the Little Kanawha River are impaired, with biological contaminants/fecal coliform and iron being the predominant impairments. GAP 1, 2, and 3 protected lands exist in the watershed, including several WMAs, two state parks, and one TNC preserve. The watershed is largely rural with very small towns, with the most significant urban development occurring in the northwest corner of the watershed, around Parkersburg. Higher quality areas for potential protection tend to occur in the south-central section of the watershed. Comments: No comments related to presented results.

Results Discussion Summary

Ruth Thornton, TNC

After presenting the results for the three watersheds, the Team reviewed the final list of metrics and their corresponding weights for each current condition index. Experts provided input on changing metric weights, as needed. The experts were also questioned regarding objective ranking thresholds, the idea of presenting combined results, and how best to handle the Wetlands overall model issue.

Specific questions that participants were asked to consider were:

- Are metrics weighted appropriately?
- Are thresholds in objective ranking defined appropriately?
- Should we use the combined objective/relative ranking results?
 - Is this an appropriate method to compare the two rankings?
 - Will this make presentation of analysis results easier or more confusing for end users?
 - Are there alternate ways to combine the two rankings?
- How should results be presented in the interactive web tool?
 - Use of the combined ranking versus objective and relative separately?
 - o Is there a suggested alternate work flow for end users?

The feedback and recommendations from the experts during the roundtable discussion and maps discussion sessions are summarized by topic in the following sections.

Individual Model and Index Discussions

Streams Water Quality Index

Resource extraction (underground and surface mining, oil and gas well drilling):

 Underground mining may be worse than surface mining in some cases (because of discharges of polluted mine water, dewatering of streams, high specific conductivity values, and mine pool discharges). Water returns to mines and gets "remineralized" over and over, so that dewatering is a water quality as well as a water quantity threat.

Therefore Underground Mining should be weighted at least as high as Surface Mining. Response: Underground Mining weight was raised to 2, equal to Surface Mining.

- The effects of underground mining are already at least partially accounted for in the assessment, as the in-stream water quality (such as median pH, etc.) is affected by surface and deep mine discharges. The lack of exact locations of where mine discharges enter streams as a result of underground mining and resulting uncertainty of which planning units may be most affected preclude increasing the weighting of underground mining beyond 2.
- The temperature of deep mines is constant, so mine water temperature doesn't fluctuate with the seasons.
- Experts suggested using pre- and post- SMCRA (Surface Mine Control and Reclamation Act) mining categories and using the SMCRA dataset for field data from the last 20 years.
- New data are being compiled by the EPA and OSM on how valley fill construction methods affect water quality. It was noted that valley fills would never reproduce the original water quality.
- OSM noted that water quality depends on the geochemistry of the enclosing rock.
 While valley fills affect the water quality for decades, the effects of underground mining persist for centuries.
- OSM noted that mining water crosses state lines. Gas drilling discharges also make their way into mine complexes and are discharged to streams (this sort of information is very difficult to capture as geospatial data).

Suggestions from the experts:

- Combine Surface and Underground Mining into one Mining metric, and let the web tool user drill down into what type of mining/discharges they are interested in. Response: the Team kept both surface and underground mining in the analysis for ease of use.
- Increase weight of oil and gas wells in relation to sedimentation issues. Response: The AllWells weight was increased from 1 to 1.5.
- Suggestion to include NPDES water quality data into the analysis. Response: The Team will look into the feasibility of including these data.

Questions from the experts:

- Did the Team consider the age of surface mines (assuming older mines like Barton Bench would have fewer detrimental effects)? Response: The Team does not know of a reliable data source for this information.
- Why is Sulfate weighted so low (at 0.5)? It should be higher, since sulfates could come in with mine water seepage. Response: There was a high correlation between Sulfate and Specific Conductivity. The Team decided to increase the weight of Sulfate to 1.
- Should Agriculture and Grazing be weighted higher in watersheds where they are more significant stressors on the landscape? Response: The goal of the project is to develop a

methodology consistent across all the watersheds of the state, it is therefore desirable to weight metrics the same across all watersheds for ease of use. Additionally, effects from these metrics are captured by the metric Natural Cover in Riparian Area.

Streams Water Quantity Index

Suggestions from the experts:

- Increase Underground Mining to a higher weight than Surface Mining. Response: Underground Mining weight was increased to 1.5.
- Impervious Surface is the main agent of flow alteration in this index. Response: No change, since this is already a critical metric in this index.
- Dams that actively regulate flow have managers that you can work with to shift flow releases, so dams are regulated and should not be a critical metric. Response: No change is needed because this was not a critical metric.
- The Team should consider modifying the Dam Drainage metric (meant as a proxy for volume of dam water storage relative to catchment volume) to include only the part below the dam. Response: This suggestion was not incorporated.

Streams Biodiversity Index

Experts questioned if the non-native invasive species (NNIS) data was robust enough to be weighted a 1.5. Response: All of the biodiversity data are weak, so the Biodiversity index weight was lowered to 0.5.

Streams Riparian Habitat Index

Experts noted that active surface mines seem more of a problem than legacy surface mines, which are now mostly re-vegetated. In the future, active mines will become legacy mines.Response: No change; Active Surface Mining is already weighted at 2 and Legacy Surface Mining at 1, which addresses this issue.

Wetlands Overall Results

The major issue the Team presented regarding Wetlands results was the apparent lack of agreement between the Wetlands Overall model results between the relative and objective methods. This is an artifact of the methodology: the relative method gives a low score to planning units that have no wetlands, while the objective method assigns the score of underlying hydrology (if present) to the entire index for planning units without mapped NWI wetlands.

Suggestions from the experts:

Include a legend that shows planning units symbolized as white = no existing or potential wetlands (no wetlands hydrology present), gray = potential wetlands (wetlands hydrology present but currently no mapped NWI wetlands). Label planning units with existing hydrology and no mapped wetlands as having "restoration potential" and flag them as restoration priorities (which would place them in the Fair category).

- Create a special category for planning units with hydrology and no wetlands, since this is an important consideration for planning restoration projects.
- Regardless of how the issue is handled, make sure it is discussed in the executive summary and in the wetlands discussion of the final reports. Response: The Team agreed to implement these suggestions in some form, and plans to document the issue in the final reports.

Questions from the experts:

OSM questioned the reason for having Overall Model scores at all, as they found it confusing
and thought it was losing detail. Response: Watershed associations and private citizens are likely
to use the overall results, which should therefore be retained in the analysis. Two different
types of users are expected: those who are graphically-oriented and those who are textoriented. This should be considered in designing the map symbology, map navigation tools, and
attribute information tables of the web tool.

Wetlands Hydrology

Experts suggested an increase in the weight of Hydric Soils. Response: The metric weight was relatively low because of the inconsistency of the soils data among counties, but was increased from 1 to 1.5.

Wetlands Wetland Habitat

Experts suggested an increase in the weight of the metric Development in Wetland Buffers. It is a critical metric and should therefore be weighted higher than it currently is. Development is permanent while other land conversions like agriculture have the potential to be reversed. Response: The Team increased the weight of Development in the Wetland Buffer from 1 to 2.

Uplands Habitat Connectivity

Experts mentioned that the fragmentation from wind turbines and energy transmission lines is more long-term than timber harvesting operations. Timbering is not necessarily equivalent to deforestation or habitat fragmentation, and does not permanently convert land. However, the impacts of unpaved roads from timber harvesting and energy development on water quality may be similar. Response: The nature of the timber harvesting data was not spatially precise enough to increase the weight of the Timber Harvest metric in the analysis.

Uplands Biodiversity

Experts asked what species were represented in these data. Response: Only terrestrial plants and animals (no aquatic species were included for the Uplands Model).

Protected Lands Index

The Team requested expert opinion on how to deal with the Protected Lands Index for each landscape. Most planning units contain no permanently protected lands, thus potentially artificially lowering the overall model scores. Should this index be moved to another category or removed from the analysis?

Experts felt that this information was valuable, as agencies and organizations often seek to expand upon existing protected lands. It may also be valuable to include a metric that indicates adjacency or proximity to protected lands. Response: The Team has considered this but has not found a practical way

to accomplish this, since the presence of roads or other fragmenting features may negate the value of the adjacency. An option would be to buffer protected lands by an arbitrary distance and increasing the ranking of areas within the buffer, but this would not take into consideration parcel ownership or size, development, etc.

It was decided that a new category should be created, such as "opportunity" or "feasibility," that would include protected lands and priority interest areas. The Protected Lands index would be removed from the current condition models, and the Priority Interest Areas would be removed from the Consolidated Analysis, incorporating both into the new category.

Combined Results Maps Discussion Summary

Experts were asked to provide feedback regarding the presentation of Combined Results in the web tool. Sample draft maps of combined results for the Gauley watershed were presented. Excel spreadsheets of numerical results were presented to illustrate some of the differences between the relative and objective methods, and corresponding results of the combined method.

Response from the experts:

- Some experts thought having one set of results was useful, but were wary of the combination technique. They thought users may stop there and not dig deeper into the details of the results and potentially missing important nuances of the results.
- Some experts preferred having only one results map, particularly if users can start with the combined results and then view the objective categories and relative rankings as attributes of planning units to dig deeper into the analysis.

Suggestions from the experts:

- Modify the colors to more clearly distinguish between shades (they found it hard to distinguish High Quality Very Good and Low Quality Poor, for example). Response: The presented results were an initial draft to get expert feedback on the concept, more time will be spent refining the final symbology before the final web tool and reports are completed.
- One monochromatic color ramp could be used for the combined results instead of using four different hues for the four categories: a continuous scale may provide a "quick assessment" of the entire watershed.
- In the final reports, highlight a few of the instances where relative and objective results seem to contradict each other and explain why this happened in terms of the methodology. Response: The Team plans to incorporate such examples in the final reports.
- Experts suggested including maps of objective and relative results in addition to the combined results, enabling users to turn these layers on and off. Response: The Team is concerned this may require too many data layers and create capacity issues in the web tool, but will look into it.
- Consult social science research how to best represent the quality of different areas using colors and/or symbology. Response: The Team will research colors and conduct an informal office survey to ensure the final symbology is intuitive and comprehensible.

Interactive Web Tool Discussion Summary

Experts were asked to provide feedback on optimal features and symbology to include in the interactive web tool. They were also asked about what sort of work flow they might use in the tool, and what a good sample work flow may be for potential end users.

Suggestions from the experts:

- Include a mechanism for users to submit data to the web tool, or at least include contact information on the website guiding users on whom they should contact with new data. Response: The Team plans to compile a list of contacts and links for the website to contact for more information.
- Consider adding mitigation bank and In Lieu Fee projects as a new layer. Response: The Team will try to obtain this data layer, but it may not be available in a spatial form, at least for the first iteration of the web tool.
- Include an "identify" tool that would display attribute information for a planning unit. Response: The Team plans to incorporate this feature into the final tool.
- Create a User Guide or provide alternate work flows for each type of user and project type. Response: The Team plans to provide a User Guide that would address a wide range of work flows.
- Include the ability to search for sites that meet specific criteria (e.g., wetland soils with no wetlands, fecal coliform impairments, future threats, etc.).
- Add congressional districts as an additional informational overlay layer.
- Use language such as "a purely GIS-based analysis suggests..." rather than explicitly stating that an area is the best to work in (for both reports and the web tool).

Potential Strategies Discussion Summary

Project objectives were reviewed with an emphasis on the goal of developing strategies to address watershed trends identified by the assessment. The purpose of the final tool is to inform a wide variety of end users, including federal and state agency personnel, watershed associations, and non-profit organizations. Thus, the project should suggest strategies that are broad and widely applicable, and avoid prescribing specific stream reaches or wetlands as conservation action targets. The goal is to identify general trends of stressors within a watershed and potential strategies to abate them. A summary of recurring trends from all five watersheds was presented. Experts were divided into two breakout groups and asked to consider the following questions:

- What are potential strategies that could be developed to address these stressor trends?
- Is this level of detail a useful part of the watershed assessment? Is it too detailed?
- What can we do to improve the usefulness of the strategies section for the end user?

Suggestions from the experts:

• Create a drop-down box with a list of strategies and actions that a user could consider to address identified issues.

- Provide links to other resources such as online manuals, websites, and organizations active in a watershed. Response: The Team will provide a page of useful links, including the West Virginia Watershed Network list of watershed associations within the state and their contact information.
- Consider questions such as: "What can I do as a landowner?", "Who should I call?", and "What can we do as a watershed association?"
- Provide examples of specific strategies that have been used successfully.
- Be sure to note that these are suggestions and not a comprehensive list, and are not necessarily endorsed by the Project Team. Add a disclaimer statement that relieves TNC, DEP, EPA, and any other partners of liability for listed recommendations.
- Note that regulatory and enforcement actions are often needed to effect certain changes, which may be outside the users' scope of influence.

Potential strategies suggested by the experts:

Overall

- Develop a statewide green infrastructure plan.
- Work with local governments to integrate the watershed assessment findings with zoning or comprehensive plans.
- Develop resources and/or points of contact for each watershed (e.g., basin-wide coordinators or county floodplain coordinators).
- Include information for lay users on subjects such as mineral rights, deed restrictions, enforcement of conservation easements.

Streams

- Create and enforce stormwater management regulations or implement new techniques (rain gardens, semi-pervious surfaces, protection/restoration/construction of small urban wetlands).
- Conduct education and outreach for owners of small businesses that may discharge to streams (e.g., dry cleaners, car washes).
- Build special handling plants for toxic materials affecting streams.
- Protest issuance of new permits.
- Add culvert sizing requirements for nation-wide permits.
- Have citizen groups assist DEP/EPA with water quality monitoring.
- Suggest Federal programs that provide funds to fence off water sources from livestock: Conservation Reserve Program (CRP) or Natural Resources Conservation Service (NRCS) for private landowners.
- Sediment control.
- Invasive species control.

Wetlands

• Develop new or influence existing floodplain management plans

- Conduct education and outreach to the public and local government officials on the value of wetlands and floodplains and the ecosystem services they provide.
- Invest resources in the mapping and inventory of wetlands, including identifying important wetlands/floodplains. Characterize wetlands (by chemistry, structure, biology) and determine their history.
- Take advantage of state tax credits for wetland protection or conservation easements.

Uplands

- Streamline procedures for constructing access roads (the BMPs for farmers, wind turbines, timber harvesting, and mining are all different).
- "Checkerboard" surface mine complexes (like timber harvest is often done) to leave habitat islands and corridors.
- Forest Reclamation Approach (FRA): cultivate multi-species stands of hardwoods instead of managing for one species.
- Forest Stewardship Council (FSC) certification for timberlands.
- Develop a system of carbon credits.

Suggestions and comments from the experts:

- Ensure that the project's basic instructions should be sufficient for a watershed group to use.
- Strategies for handling current and legacy mining work are already available in SMCRA.
- Treatment for issues like acid mine drainage requires a mechanism that is permanent and long term (e.g., an endowment) and requires substantial investment and equipment. This may be beyond some users' capability. However, the abandoned mine lands program has money for pre-SMCRA sites, which established watershed associations can apply for.

Questions from the experts:

• Will the user not already know which strategies are needed? It is more important to spell out the problems, not the solutions. Users might be looking for places to implement strategies they have already developed. Response: Because the tool is intended for different types of users, and because it is a project deliverable for the grant, strategies need to be included in the assessment.

Workshop Day 2 January 9, 2013

Presentation Summary

The second day of the workshop consisted of presentations of Consolidated Analysis results for the three watersheds. Experts were asked to provide feedback and suggestions for improvement of the overall methodology and model structure, as well as suggestions for any additional data sources that may help make the product more robust.

A significant suggestion regarding the Consolidated Analysis model methodology was to change from a discrete, vector-based analysis to a continuous, raster-based analysis that would present a gradient of potential threat across the entire HUC8 watershed. This would address some of the shortcomings of the current, HUC12 planning unit-based analysis, including the coarse scale of many of the individual metrics. The Team plans to try this new methodology to determine if it provides a better representation of the Consolidated Analysis results. Another significant suggestion was to add an additional category that would capture the idea of "opportunity" or feasibility, and would include the Protected Lands and Priority Interest Areas metrics, since they do not fit well within the current condition analysis.

Overview of Upper Guyandotte Watershed Consolidated Analysis Results

Diane Packett, TNC

The overall Consolidated Analysis results suggest that the greatest potential future threats lie in the eastern portion of the watershed. Within the Energy index results, the northwestern portion of the watershed also emerged as highly threatened, largely due to the extensive future coal mining potential in that area. Within the Population/Development index, a few major roads are proposed to run along the southern ridge of the watershed (King Coal Highway) and across the eastern section (Coalfields Expressway and Shawnee Parkway). Priority Interest Areas are restricted primarily to the southern and eastern portions of the watershed.

Suggestions from the experts:

- Coal could be separated into metallurgical versus steam coal, since metallurgical has a much higher probability of development, which may affect the threat potential. Response: Attribute information that distinguishes between the different types of coal is not available.
- Provide coal seam layer names in the attribute information of the dataset.
- The 2002 Environmental Impact Statement (EIS) report has maps and data for each coal seam volumetrically. Response: The Team will research these to determine if the data can be used.
- The analysis seems to be missing Route 10. Response: Some of the Route 10 construction has been completed but the proposals for other parts are not done yet.

Questions from the experts:

- Is the project tapped into TNC's Energy Development/Development by Design work? Response: Yes, we have included the data that are completed, but many of the results will not be ready for another 6-12 months. The Team plans to incorporate the newly released TNC Aquatic Resiliency data.
- What is the definition of good vs. bad for the future energy threat? Response: Red corresponds to higher ecological threat to stay consisted with other color symbologies used in the assessment, where red indicated lower quality.
- What is the time frame considered in the Consolidated Analysis? Response: This varied by metric, but the Team tried to stay as consistent as possible given different sources of data, and generally projected threats for the next 50 100 years.

Overview of Gauley Watershed Consolidated Analysis Results

Misty Downing, TNC

Results suggest that the greatest potential future threats are in the north-central portion of the watershed. Within the Energy index results, the northern portion and part of the northeast also emerged as highly threatened, largely due to the extensive future coal mining potential in the north, and wind and shale gas development potential in the east, though this is an area largely within existing protected lands. Priority Interest Areas are restricted primarily to the eastern portion of the watershed, around the existing protected lands areas.

Suggestions from the experts:

- The power plant proposed for Rupert/Rainelle appears to be off the books and will not be constructed. Response: The Team will remove it from the analysis.
- Wind development and natural gas development within the Monongahela National Forest is a policy and mineral ownership issue. While some forms of development are unlikely in the Forest, they are not strictly prohibited, and there is no guarantee that energy development will not occur on national forest lands. Response: Mineral ownership on federal lands is included in the analysis, and only the portions in the National Forest where mineral rights are owned by other entities are included in the analysis.

Overview of Little Kanawha Watershed Consolidated Analysis Results

Diane Packett, TNC

The overall Consolidated Analysis results suggest that the greatest potential future threats are in the eastern portion of the watershed. Within the Energy index results, the eastern portion of the watershed emerged again as highly threatened, due to potential shale gas development and a proposed energy transmission line, though it is believed that the PATH line has been cancelled. The watershed has a few scattered pockets of high resiliency and current density (indicating relatively low fragmentation of habitat), mostly away from existing development and infrastructure. Priority Interest Areas are found throughout the watershed, mostly around major tributaries to the Little Kanawha River.

Comments from the experts:

- The PATH transmission line is officially off the books. Response: The Team will remove it from the analysis.
- Potential future Marcellus Shale gas development is influenced not only by the shale bed thickness, but also by proximity to existing transmission lines. Areas close to existing lines are more likely to be developed first, which should be included in the analysis. Natural gas is compressed and transported by rail from North Dakota, suggesting that rail availability may also influence the likelihood of gas well development while pipelines are being constructed. Response: The Team will investigate the feasibility of including these factors in the analysis.

Consolidated Analysis Discussion Summary

After the presentation of the Consolidated Analysis results, experts were divided into two breakout groups to discuss the following questions:

- What is your comfort level with the Consolidated Analysis model given the data limitations?
- How do we best integrate the Consolidated Analysis model with the web tool?
 - o First select candidate conservation sites using Current Condition analysis results,
 - Then use Consolidated Analysis results to provide more information and make final selection of sites to explore further.
- Should Protected Lands be moved to this category instead of being in Current Condition?
 - Though Protected Lands are a reflection of the current state of the watershed, they are not an ecological factor, and inform the feasibility or priority for projects more than ecological quality.

Suggestions from the experts:

- USACE Institute of Water Resources is completing the Ohio River Basin climate change study, which will have basin-specific 30-year modeled precipitation and temperature changes due to climate change. The dataset should be available within a few weeks. Response: The Team plans to incorporate these data if they become available in time.
- Check the Department of Education for new schools data or school consolidation data. Response: The Team researched but found no spatial data for proposed schools in the five watersheds.
- The final reports and web tool should state clearly that the Consolidated Analysis is a broad generalization and the available data are coarse-scale, modeled, or vague.
- Include the Consolidated Analysis results in the final reports but not the web tool.
- Include sources and dates for the data and thoroughly explain any limitations.
- Experts liked the idea of having three categories: Current Condition/Function, Future Threats, and a third category that indicates conservation opportunities and includes protected lands and priority interest areas.
- Include FEMA mitigation lands, if available.

- Demonstrate the web application to the experts before presenting it at the partner/stakeholder workshops or releasing it to the public to get experts' feedback on the functionality and included datasets.
- Check the geothermal study quality assessments; the experts suspect it may have been "debunked".

Questions from the experts:

• Why are there no National Park Service data in Priority Interest Areas? Response: The Team has tried repeatedly to obtain these data and has not received it. We will continue to try to get these data.

Next Steps

Prior to the final partner/stakeholder workshop, the Team will incorporate suggested changes to the metric thresholds and weighting, symbology for wetland hydrology and combined results, and strategies. Final results will be presented at the stakeholder workshop in addition to a demonstration of a preliminary version of the interactive web tool.

Meeting Attendees

Name	Affiliation	Email	Telephone
Keith Fisher	TNC	<u>keith_fisher@tnc.org</u>	304-637-0160
Ruth Thornton	TNC	rthornton@tnc.org	304-637-0160
Diane Packett	TNC	<u>dpackett@tnc.org</u>	304-637-0160
Misty Downing	TNC	mdowning@tnc.org	304-637-0160
Amy Cimarolli	TNC	acimarolli@tnc.org	304-637-0160
Ashton Berdine	TNC	aberdine@tnc.org	304-637-0160
Beth Wheatley	TNC	ewheatley@tnc.org	304-345-4350
Braven Beaty	TNC	<u>bbeaty@tnc.org</u>	276-676-2209
Danny Bennett	WVDNR	Danny.A.Bennett@wv.gov	304-637-0245
R. Gus Drum	USACE	richard.g.drum@usace.army.mil	304-399-5851
Dan Bailey	USACE	Daniel.s.bailey@usace.army.mil	304-399-5824
Terry Messinger	USGS	tmessing@ucgs.gov	304-347-5130
Dennis Stottlemyer	DEP	dennis.o.stottlemyer@wv.gov	304-926-0440
Joy Gillespie	EPA	gillespie.joy@epa.gov	215-814-2793
Mariah Beeson-Kesler	OSM/Americorps	mbeeson-kesler@osmre.gov	
Tom Galya	OSM	tgalya@osmre.gov	304-347-7162

West Virginia Watershed Assessment Pilot Project Gauley, Upper Guyandotte, and Little Kanawha Watersheds Stakeholder Workshop Summary May 8, 2013 Flatwoods, West Virginia

Workshop Objectives

The goals of this workshop were to:

- 7) present the final assessment methodology, current condition, and consolidated analysis results for all three watersheds and obtain stakeholder feedback;
- 8) demonstrate a preliminary version of the interactive web tool and present potential use scenarios. Get stakeholder input on desired web tool design, functionality, and possible uses/workflows; and
- 9) present and discuss the development of strategies that should be applied according to the analysis results.

Presentation Summary

The workshop began with a review of the project background, including project goals and timeline, and a brief review of the watershed assessment methodology: landscapes, indices, metrics, and objective thresholds and categorizations. The Team then presented the latest version of the current condition and consolidated analysis results for the Upper Guyandotte, Gauley, and Little Kanawha watersheds. An open discussion followed each presentation, during which experts who had not attended previous workshops requested further information, and experts familiar with the project offered suggestions and additional questions. Overview and results maps for the three watersheds were displayed for reference. After the watershed presentations, the demo version of the web map tool was presented, and potential workflows for use of the tool were discussed. The Team reviewed trends emerging from the analysis results with stakeholders, and solicited advice on the best way to present potential strategies to end users.

Review of Project Background

Ruth Thornton, TNC

Ruth presented the project background and a review of the methodology, including a detailed review of analysis indices and metrics, and how the thresholds used for the analysis were determined from reference and stressed catchments. She also presented the concept of "critical" metrics, those metrics significant enough to cap their corresponding index score, regardless of other metrics within that index.

Following the review of the project, stakeholders were given the opportunity to ask questions about the assessment methodology and results. Many of the questions involved the nature of the data used in the project. A brief discussion ensued about wetlands data, and whether or not non-natural wetlands (such as stormwater catchments) were included, or other sources of wetlands data (such as DNR) were used. The Project Team explained that only National Wetlands Inventory (NWI) data were used, as other sources were less reliable or currently incomplete or unpublished. A recurring question was whether or not the project results in the web tool would be updated as conditions changed, and if users could

contact the Project Team with information to update either the data or analysis. The Team explained that as the results are calculated through a complex analysis they will remain static, but as many of the data layers as possible will be dynamic and updated regularly. Further funding for the project is being pursued, and if successful, the results may be updated in the future, perhaps on a 3-5 year cycle by interns at the DEP, or through a similar process.

Overview of Upper Guyandotte Watershed Results

Diane Packett, TNC

A large amount of active and legacy surface mining occurs in this watershed, as well as underground mining, especially in the northwest and southeast areas. There are many wells, but little concentrated development except in the Logan area. Most of the major tributaries of the Guyandotte River are impaired. There are GAP 2 & 3 Protected Lands, including several WMAs and one state park. Consolidated Analysis results revealed higher potential future threats in the northwest and east of the watershed, with the central and southern portions having relatively lower future threats.

Comments: It was noted that separation of mineral rights is a big problem, particularly in the Upper Guyandotte. Incompatible land ownership patterns can be considered a threat much like energy development is a threat; for example, even if DNR owns the surface rights they may not own the mineral rights in a WMA. The project team should check with the GIS Analyst at the WV DNR, Alicia Mein, to see if she has spatial information on state mineral ownership to supplement the federal mineral rights data from USFS.

Overview of Gauley Watershed Results

Misty Downing, TNC

The Gauley watershed is notable for a large area of undeveloped Wilderness Area, and the large Meadow River wetland complex in the southern portion. There is some surface and underground mining, and gas development occurs in the northwestern portion of the watershed. Development trends are clearly reflected in the results; the impacts of roads and urban areas are particularly evident in the uplands analysis. Streams water quality impairments are concentrated in the northwest part of the watershed, near mining activity, though there are impairments even within the protected areas. General trends consisted of Very Good-Good quality planning units in much of the eastern part of the watershed, and lower quality in the west and south, particularly around the major highways and small urban areas. There is also a significant amount of alternative land use, such as grazing, in the southern Meadow River portion of the watershed.

Comments: It was noted that DNR considers the Meadow River watershed a top priority, although there are no spatial data available on their priority areas at this time. It was questioned whether or not natural cover included pasture/hay, which it does not (this explains some of the lower scores in the Meadow River area, due to increased grazing activity). A stakeholder inquired about how TNC handles prioritization of potential conservation projects – do we use the results from this project, or would TNC send out a team to collect data in the field, particularly regarding biodiversity. The Project Team explained that field work is generally outside the scope of TNC protection projects, though we do consult DNR and other agencies/experts to assess the biodiversity of a particular site and conduct site visits to determine an area's suitability for conservation. Explanations of the various agency priority

areas was requested (WV Division of Forestry, TNC, etc.), suggesting that it may be useful to provide documentation/background information about priority areas on the project's ConserveOnline webpage.

Overview of Little Kanawha Watershed Results

Misty Downing, TNC

The Little Kanawha watershed has very little mining activity, but a great of oil and gas well development, both current and historic. It is largely a rural watershed, except for the urban area around Parkersburg, where the river drains into the Ohio. The water quality results were generally good, as there are few impaired streams, with the major issue being sedimentation. It was noted that the Streams Riparian Habitat ranks were relatively low in all three watersheds, and there appears to be a discrepancy in results between the HUC12 and catchment levels. This is believed to be a result of the methodology, i.e., the thresholds for critical metrics being the same for both HUC12s and NHDPlus catchments, and the fact that HUC12 and catchment-level results are determined independently of each other, but the Project Team plans to investigate this issue more closely. The Little Kanawha has comparatively few wetlands, but those existing provide decent opportunities for restoration. Uplands results were dominated by the effect of development/infrastructure around the urban areas. Consolidated Analysis results revealed a general trend of increasing potential future threats from west to east across the watershed.

Comments: Representatives from DEP mentioned that the Little Kanawha was known to be undersampled and under-represented, and this was in the process of being rectified, which may explain the fewer impaired streams.

Interactive Web Mapping Tool

The stakeholder group was presented with the demonstration/draft version of the future web mapping tool currently under development by Paul Angelino and Graham Emde of TNC's Colorado office. Currently, the demonstration version is a basic map with data layers that can be turned off and on in a table of contents, with little advanced functionality or formatting. Current layers include hydrology and mining, various land use and land cover layers, and the assessment results. To provide a clearer example of how the final web tool would function and what potential work flows would be, a potential use scenario was presented for each watershed and landscape. These scenarios were based on many of the project team's assumptions about how users would mainly use the web tool, for example that Very Good areas would be considered priorities primarily for protection and Fair areas mainly for restoration. Stakeholders were encouraged to provide their own examples of how they anticipated using the tool, their possible workflow(s), and what data and attribute information may be most useful in project planning.

Potential uses/alternative workflows suggested by stakeholders:

- DNR may use the tool to assess the potential success of a project, for example for mitigation proposals.
- Some agencies, such as USACE, may work at a regional or HUC8 level, and use the tool to get a general idea of trends within a larger watershed, before focusing on individual HUC12- based watershed planning.

- Some stakeholders envisioned using the tool for planning future projects: for example, determining accessibility, extent of surface mining, and if there is a watershed group operating in the area.
- A potential application of the tool would identify HUC12s that are ranked Very Good or Good, and look at the catchments within those HUC12s to identify areas ranked Fair or Poor, and which may indicate higher priorities for restoration action as they are pockets of poorer quality within higher-quality areas.
- A Poor rating was not considered necessarily a deterrent, as some end users may specifically look for those places to work, so that their efforts provide significant enough "lift" for regulatory purposes.
- Some stakeholders anticipated using the tool for project prioritization.
- Analysis results could help support other conservation activities by objectively rating the quality of different areas (for instance, WV Rivers Coalition demonstrating the importance of the eastern portions of the Gauley HUC8 watershed being designated a Birthplace of Rivers, supported by the Very Good-Good scores across multiple models and indices).

Stakeholders requested a Resources page for the web tool and suggested potential contacts or webpages to list that users can consult with further questions:

- Any existing best management practices (BMPs), how-to manuals and/or potential funding sources.
- USDA-NRCS (Natural Resources Conservation Service; www.nrcs.usda.gov).
- WV Division of Forestry.
- Chesapeake Bay Program (www.chesapeakebay.net).
- US EPA.
- Non-point pollution source webpage at WVDEP.
- Arbor Day Foundation.
- Nurseries/tree farms.
- WV Conservation Agency (www.wvca.us): Has 14 conservation districts across the state, with cooperative working agreements between different agencies and organizations, making it a good clearinghouse to reach multiple partners.

Stakeholders suggested additional datasets or changes to the data for the web map:

- Link map to Web Soil Surveys, which are updated 4-5 times a year, to bring in soils data if desired.
- Add the Wetland Reserve Program (WRP) national dataset.
- Add all modeled future energy threats data, if available (shale gas/well development potential, wind potential).
- Retain the impervious cover layer, which stakeholders considered an important dataset.
- Separate the protected lands into several layers that can be turned on/off (state, federal, etc.) as some users would be limited on which type of public lands they can work on or with.
- Add local watershed groups as potential contacts for more information or collaboration.

- Add data about which streams have current or pending watershed-based plans or TMDLs.
- Find or create spatial data to reflect all other restoration work happening within the watersheds, so end users know what projects exist or are pending in places they may be interested in working (this could help to identify gaps between existing projects and increase connectivity).
- Add a layer for activities carried out under Nationwide Permit 27 (general federal permit for stream/wetland restoration).
- Add layers for In Lieu Fee (ILF) projects, mitigation banks, and compensatory mitigation sites.
- Regularly update the Water Quality data (perhaps include a version of the trends tool from the DEP mining data application if feasible). Project Team intends to publish median Water Quality data for each station in the web tool.
- Add volunteer water quality monitoring data (which should be kept separate from agency data, with its rigorous quality control procedures). Trout Unlimited is initiating a water quality study, data may be available in about one year.

Desired functionality/features of the web tool:

- Search by town, county, HUC12, latitude/longitude coordinates.
- Print attribute tables.
- Manipulate the transparency and order of layers.
- Access contact information and publication dates (particularly for water quality data) for datasets in web tool
- Hover mouse over planning units to get their names.
- Hover mouse over a feature to get the lat/long coordinates.
- Import/export shapefiles.
- Save a map to pdf or jpg format.
- Export to .kmz format (for use in Google Earth).
- Get a well's API number, perhaps by hovering mouse over point feature.
- Click on map feature and open hyperlink to more info about data, a web page with a data source or ability to download that data.
- Streams labeled with DNR stream reach codes.
- A user guide to help users who aren't familiar with prioritization procedures or how to choose the best project for their goals.
- An embedded glossary of some of the more scientific or agency-related terms (particularly acronyms).

Strategies and Trends

Ruth presented the concept of strategy development for the pilot project watersheds and solicited input on how end users may perceive the usefulness or necessity of including a list of potential strategies, and how detailed the strategies should be. Stakeholders were reminded that the goal of the project was to conduct watershed assessments and not provide watershed-based plans, so that the tool remains useful to the widest variety of potential stakeholders. Stakeholders were given a list of trends that emerged from the initial analysis results and asked to consider the following questions:

- How useful are potential strategies to you?
- How do you anticipate using the web tool and supplied strategies?
- What can we do to improve the usefulness of the strategies section for the end user?
- What datasets would help you develop useful strategies?

The stakeholders provided a variety of feedback to these issues. It was believed that a strategies section would be most useful to groups other than regulatory agencies. It was suggested that it would be beneficial to distinguish between regulatory/enforcement related strategies versus voluntary or optional strategies (which often also differentiates between more expensive and complex strategies versus what would be feasible for a watershed group or private landowner). One suggestion was to relate results seen in particular indices or metrics to trends in the watershed and potential resulting strategies to abate those threats. Another suggestion was to provide a sample workflow of this process so end users can learn how to associate analysis results in certain models and indices with possible conservation or remediation projects. As trends are anticipated to be different with different causes in each watershed, a general trends section may not be applicable, but a guide for identifying trends from analysis results may be more useful. There was an overall sentiment that a specific strategies section would likely not be very useful, but a detailed guide to potential resources for determining strategies (links to BMPs, manuals, etc.) would be more helpful.

Name	Affiliation	Email	Telephone
Keith Fisher	TNC	Keith_fisher@tnc.org	304-637-0160
Ruth Thornton	TNC	rthornton@tnc.org	304-637-0160
Diane Packett	TNC	dpackett@tnc.org	304-637-0160
Misty Downing	TNC	mdowning@tnc.org	304-637-0160
Dennis Stottlemyer	WVDEP	Dennis.o.stottlemyer@wv.gov	304-926-0440
Michael Whitman	WVDEP	michael.j.whitman@wv.gov	304-926-0499 (1088)
John King	WVDEP	John.M.S.King@wv.gov	304-382-8666
Muriah Beeson-Kesler	OSM (Americorps)	Mbeeson-kesler@osmre.gov	937-707-8716
Kara Greathouse	Region 3 PDC	kgreathouse@wvregion3.org	304-744-4258
Glenn McLernon	WVDEP	Glenn.D.Mclernon@wv.gov	304-926-0499
Cindy Rank	FOLK/WVHC	Clrank2@gmail.com	304-924-5802
Jami Buchanan	USACE	Jami.L.buchanan@usace.army.mil	304-399-5347
Susan Stafford	USACE	Susan.B.Stafford@usace.army.mil	304-399-5729
Herbert Andrick	USDA-NRCS	Herbert.andrick@wv.usda.gov	304-2914-4377 (107)
Danny Bennett	WVDNR	Danny.a.bennett@wv.gov	304-637-0245
Kathleen Tyner	WV Rivers	ktyner@wvrivers.org	304-637-7201
	Coalition		
Nick Murray	WVDEP	Nick.s.murray@wv.gov	304-926-0499
Tim Craddock	WVDEP	timothy.d.craddock@wv.gov	304-926-0499 (1040)
Terrell Ellis	WVLT	Terrell@wvlandtrust.org	304-346-7788
Doug Wood	Retired WVDEP	chingwe1755@yahoo.com	304-550-1006

Meeting Attendees