

Experiences of community based monitoring in the Yucatán Peninsula

Goals of the Community MRV systems :

- Generate quality data to reach certification: E.g. FSC or Voluntary Carbon Market
- Build local capacities that allow long term monitoring

Plan Vivo Carbon management and rural livelihoods

- Allow stronger appropriation of new concepts such as forest carbon & safeguard monitoring for REDD+
- Improve the sustainability of agriculture and forest management practices



Case study

Applicability

Prospect

Location

Case study

Applicability

Prospect

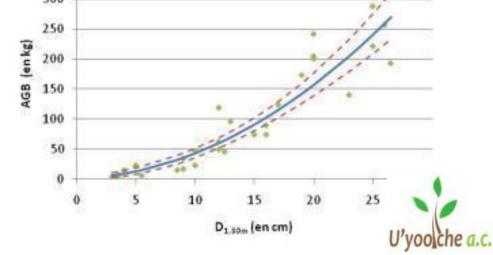
Case 1: Carbon monitoring system in the Selva Maya U'yool'che A.C.

Prospect

Use of Cyber Tracker, and adapted plot surveying methodology

Development NGO + Community + Academy of 4 local allometric equation

Applicability


Case study

Prospect

- Field data collected by community technicians
- Joint data analysis, presentation of the full results to the community Verification and validation by ECOSUR

Alianza Méxicoredd+ Con la gente por sus bosques	
5	

Introduction	Case study		Applicab	oility	Prospe	ct
r	1	1	Result	Quanti	fication of	Carbon
	media		stocks	in the c	enter of Q	uintana
	(tC/ha		125 -	roc	o state	
)					
Huamil	45.9	per s	(t hi) 75 -		<u> </u>	
			b 50 - 25 -	Ţ		
Acahual	84.9	4 8	0 -		*	×
			Carbone	sahana Guar	Acano Miaperu	ubperennito.
Selva	100.9		/ ha		Acahual Acahua	hada upperantolia
perturbada			0 - 10	Acahual 4 años Acahual ≥ 12 años	23.023	
Selva	120.9		20 - 45	Selva perturbada Selva mediana	124.911	
mediana			45 - 65 65 - 90		KI	

Case study

Prospect

Case 2: Growth rate study in Semi-evergreen forest

Case 2:

- Goal: to evaluate the growing rate of multiple species in the Selva Maya
- Process started in 2007
- + 800 dendrometer rings in place

PEOPLE AND PLANTS INTERNATIONAL creative solutions for the sustainable use and obuservation of plants

Case study

Applicability

Prospect

Case 2: growth rate study in Semi-evergreen forest

- Monitoring by the community
- Data processing in the botanical garden of NY -5 years
- Data will be used directly to improve the accuracy of the management plans

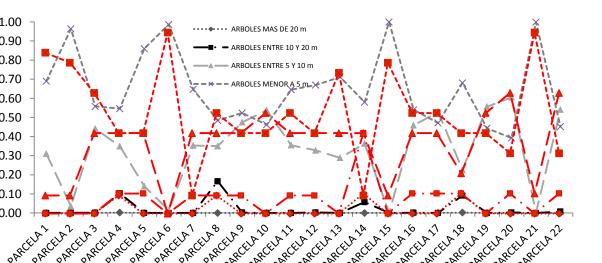
Case study

Applicability

Prospect

Case 3: MRV System for the Campeche State

Case study


Applicability

Prospect

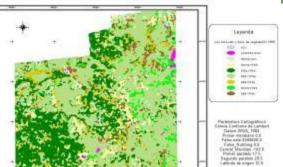
Case 3: Community monitoring in Calakmul ECOSUR

ECOSUR compared 2 methodologies:

Quantitative – Scientific - Technical VS Community – Semi-quantitative

ECOSUR

Introduction


Case study

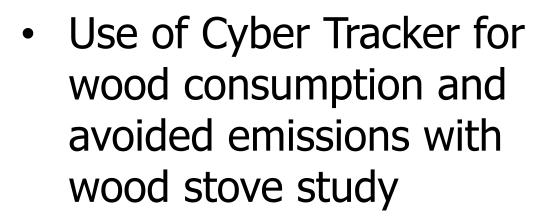
Prospect

- guide books for the communities
 - Validation of the quality of the data collected by the communities

Edad (años)	Cuanti tativo	Semi- Cuantitativo
5	3.96	4.2
10	20.72	18.7
17	37.54	34.3
50	86.48	93.46

Case 4: Safeguards & Co-benefits monitoring system in Mayan Communities

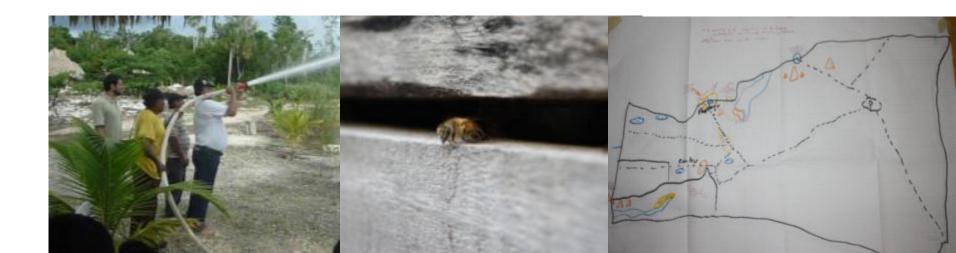
Identification & community monitoring system for key attributes for the participatory identification of high conservation value forest



Introducción

Métodos

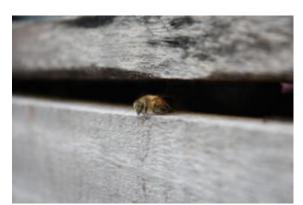
Aplicabilidad



Applicability

Community strategies bases in "community science"

- -Best practices in agriculture and forestry
- Improve the sustainability of community forest management
- Biodiversity management
- Voluntary market forest carbon projects
- Fire management


Applicability "community science" can be useful to national MRV strategy

- Local allometric equation
- High-quality data, based in field assessment, that can improve the quality of the MRV system

Case study

- Inputs for models (e.g. growing rate for CCBM-CFS3)
- -Evaluation of degradation
- Safeguards monitoring system

Prospect

Outlook

- Strengthen and expand those systems
- External validation for the methodologies
- Secure long term finance
- Systematize & stock in a efficient way the information
- Train more people, and generate exchange between national and international experiences

Alianza Méxicoredd+ Con la gente por sus bosques

Thank you for your attention!

spoust@tnc.org

Case 1 & 4:

www.uyoolche.org.mx

- 983 83 40176
- Contacto: Omar Martinez:
 - supra_1309@ hotmail.com

Contacto:

Case 2:

- Contacto: Silvia
 Purata
- puratasilvia@
 gmail.com

Case 3:

- Contacto: Da. Ligia Ezparza:
 - lesparza@ ecosur.mx