

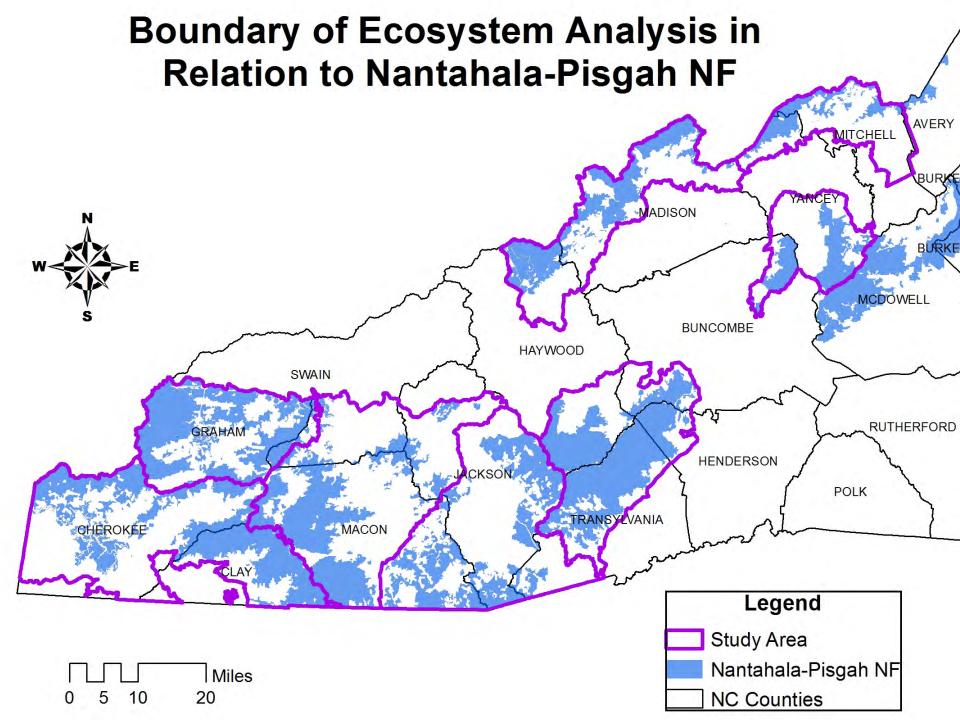
WESTERN NORTH CAROLINA ALLIANCE

Protecting our mountains, rivers, and forests

Assessment of Landscape Scale Forest Structure and Ecological Departure in Western North Carolina Josh Kelly

Outline of Presentation

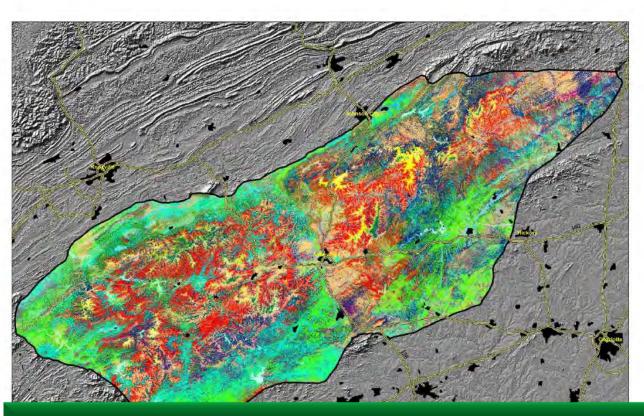
- Overview of "Maps, Models, and Metrics" eCAP methodology sensu Low et al. (2010)
- Review of Ecological Zone Models (Maps)
- Review of Landfire Biophysical Settings (Models)
- Review LiDAR data products available for vegetation analysis (Measurements)
- Ecological Departure (Metrics)



Low, Greg, Susan L. Abele, and Louis Provencher. 2010. Enhanced conservation action planning: assessing landscape conditions and predicting benefits of restoration strategies. *Journal of Conservation Planning* Vol 6 36-60.

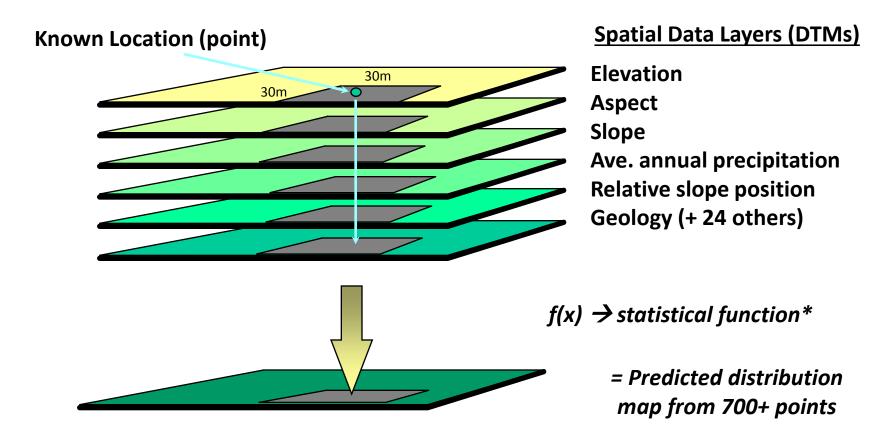
The Study Area

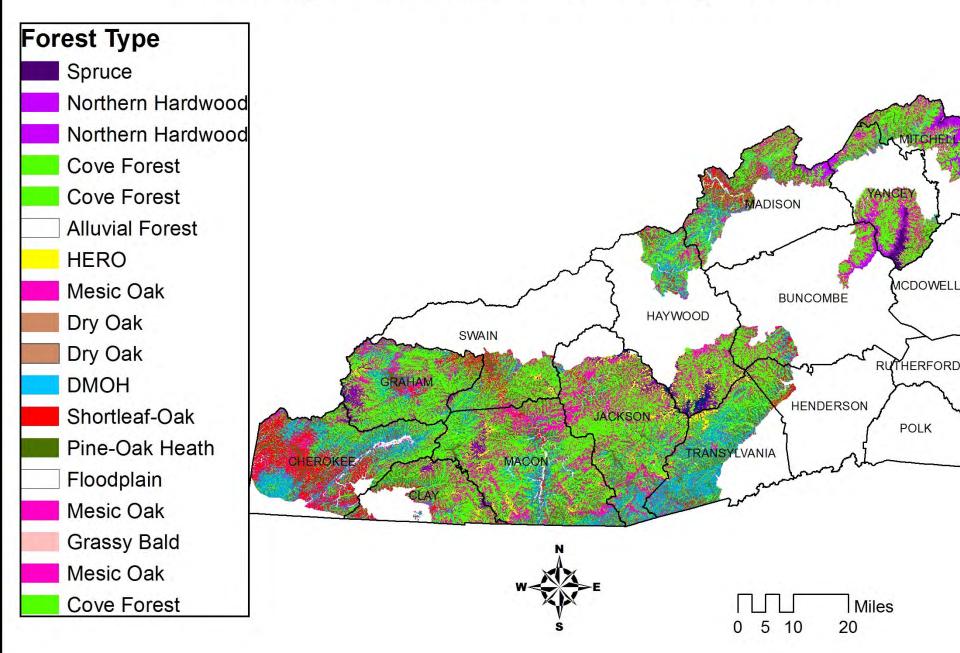
- Study area is the overlap of the Proclamation Boundary of Nantahala-Pisgah National Forest and 2005 LiDAR data totaling 2,020,851 acres
- 844,831 acres of Nantahala-Pisgah NF
- 1,176,060 acres of other lands, mostly private ownership
- Approximately1,767,150 acres of forest


The Maps: Ecological Zone Models

Ecological Zones in the Southern Blue Ridge: 3rd Approximation

Steven A. Simon, Ecological Modeling and Fire Ecology Inc., Asheville, North Carolina


12/31/2011



Ecological Systems / Zone modeling

* e.g. Maximum entropy, Logistic regression, Discriminant analysis From "Assessment and Mapping of Vegetation Communities in the Shenandoah National Park," John Young, USGS

Ecological Zones in Study Area

Models: LANDFIRE Biophysical Settings

LANDFIRE developed reference condition models for every ecological system in the United States

"All Models Are Wrong But Some Are Useful"

George E.P. Box

Biophysical Setting 5713180	Southern and Central App Forest	alachian Cove
 This BPS is lamped with: This BPS is gold into multiple woulds: 		
General Information		
Contributora (also see the Comments field	Date 6/15/2007	
Modeler t Mill Type unle_pyre	Pasianiarte Reviewer	
Modeler 2	Reviewer	
Minimier 3	Reviewer	
Vegetation Type	Man Zone Model Zone	
Print and Woodland	37 Alaska	
Dominani Species' General Model Gos	California Oraș Bas	
FARE ARTE Lienders	Charl Lak	
LITU QUILU Local Data	Northeast	
ACSA3 QUAL Player Lainu TIAMH CADEI2	Notitaen 1	

Geographic Range

This ByS multi-september for "crew times" or mained-mesophytic terms (including "Acad Cower with Hinnicek) of shallowed logoginghic positions in dis Strutture Bias Biato and control Approximation Montains, ranging from retribution (OA (Brought the similar) Applications of the Configure and VA. It is turned in an area that generally corresponds (in the senil) with the Application OB the region of Kichler (Sole). To the methods need to the region it is defined as parts of the Novel Point regions, and by the syst it includes the higher elevation and revers region general for Movel Movement of the syst it includes the higher elevation and revers region general for Movel Movement of the syst it includes the higher elevation and revers region generally commined with M221 of Keys et al. (1995).

Biophysical Site Description

Movid mesophytic trends secure on most, importabilitically producting arms (e.g. correct v-diaged valideys, meth and cost facing test where) within highly dense init fulls and miximism. On deepers it forms a mesotic with gyunghese subchristing transits, scheruby, corre or mixing mesophytic forms are matrixed as the energy protocoling course and endschriefery mexates on the initiatives. The dissociated toportaphy creates strong gradients in microcoling and wells and floatment (1993). In the absence of floatmenty wells (Disterior et al. 1997; burnes and al. 1997; Morris and Boarner (1993). In the absence of floatmenty of collisions of al. 1997; burnes and al. 1997; Morris and Boarner (1993). In the absence of floatmenty of all (1976; Morris disteriorms, thus environmental gradients determine from composition (Editchine et al. 1976; Morris 1993; house at al. 1997; Morris and Boarner (1993). In the absence of floatmenty of the disterior of all 1976; burnes at al. 1997; Morris and Boarner (1993). In this absence of the disterior of all (1976; Morris 1993; house at al. 1997; Morris and Boarner (1993). In this absence of the disterior of all (1976; Morris 1993; house at al. 1997; Morris and Boarner (1994). The second from the disterior of all (1976; Morris 1993; house at all (1997; Morris) in the second from the disterior in the structor rational more disterior in the Southern and Constant Approaches. They need to be all inclusion on the structor rational-monophysic type in the Southern and Constant Approaches.

"Deviated Gravian and how the MDCS IS 10/10 clubbers. To chard a search work where and the Velanti ratio rate

LANDFIRE Biophysical Setting Model

Biophysical Setting 5713520

Southern Appalachian Montane Pine Forest and Woodland

This BPS is lumped with:

This BPS is split into multiple models:

Genera	al Informa	ation					
Contribu	tors (also se	e the Con	ments field	Date	8/15/2007		
	1 Steve Croy 2 Margit Bud		mbucher@tnc.	org			wsanjule@tnc.org clafon@geog.tamu.ed u
Modeler	3 Sam Lindb	lom	slindblom@tnc	c.org	Reviewer		
Vegetatio	on Type			- *	Map Zone	Model Zone	
Forest an	nd Woodland				57	Alaska	N-Cent.Rockies
Dominan	t Species*	Gener	al Model Sources	3		California	Pacific Northwest South Central
PIPU5 PIRI QUPR2 QUCO2	GAYLU VACCI QUIL		Literature Local Data Expert Estimate			Great Bash Great Lakes Northeast	☐ Southeast ✓ S. Appalachians

Geographic Range

Blue Ridge Mountains of TN, NC, and VA (including extreme northeast GA and northwest SC). Mountains of the Ridge and Valley in VA and WV. Western extent is along the KY-VA border on Pine Mtn.

There may also be isolated examples occurring on ridges or monadnocks like Pine Mountain (MZ54 GA), Kings Mountain (MZ59 NC), Pilot Mountain and Hanging Rock in NC.

Disturbance Probabilities for Montane Pine Forest & Woodland

Fire Regime Group**:	Fire Intervals	Avg Fl	Min Fl	Max FI	Probability	Percent of All Fires
	Replacement	88.43			0.01131	5
Historical Fire Size (acres)	Mixed	100.9			0.00991	5
Avg 1000	Surface	5.422			0.18443	90
Min 100	All Fires	5			0.20565	I
Max 10000	Eiro Intoniala	CON.				
Sources of Fire Regime Data Literature Local Data Expert Estimate Additional Disturbances Modeled	combined (All maximum show	expressed Fires). Av w the relat n years ar	erage FI is ive range ind is used	s central ter of fire interv in reference	idency modele als, if known. e condition mod	and for all types of fi d. Minimum and Probability is the inve deling. Percent of all

Class A 12%	Indicat Canop	y Position	- Structure	Data (for upper laye	
Early Development 1 All Structure		Mid-Upper	-	Min	Max
Larry Development 1 An Structure	PIPU5	Mid-Upper	Cover	51%	100 %
Upper Layer Lifeform			Height	Tree 0m	Tree 5m
□Herbaceous □Shrub ☑Tree <u>Fuel Model</u>	QUCO2 QUPR2		Tree Size	Class Sapling >4.5ft; Ayer lifeform differs fro	
Class C 25%	Indicator Canopy P	Species* and	Structure Da	ata (for upper layer li	feform)
	PIRI	A STATE OF A		Min	Max
Mid Development 1 Open	PIPU5	Mid-Upper Mid-Upper	Cover	21%	70 %
		Mid-Upper	Height	Tree 5.1m	Tree 10m
Unner Lover Lifeform	QUCO2	Mid-Upper	T O' OI	ass Medium 9-21"DE	11
Herbaceous	QUPR2	Mid-Upper	Tree Size Cl		And the Date of the
		[r lifeform differs from o	And the Date of the
 ☐ Herbaceous ☐ Shrub ✓ Tree Fuel Model 9 	Indicato	or Species* and	Upper laye		dominant lifeform.
Herbaceous Shrub ✓ Tree <u>Fuel Model</u> 9 Class D 55 %	Indicato Canopy	or Species* and Position	Upper laye	r lifeform differs from o	dominant lifeform.
Herbaceous Shrub ✓ Tree <u>Fuel Model</u> 9 Class D 55 %	Indicato Canopy PIRI	or Species* and Position Upper	Upper laye	r lifeform differs from o Data (for upper laye	dominant lifeform. <u>r lifeform)</u>
 ☐ Herbaceous ☐ Shrub ☑ Tree Fuel Model 9 Class D 55 % Late Development 1 Open 	Indicato Canopy PIRI PIPU5	or Species* and Position Upper Upper	Upper laye	r lifeform differs from o Data (for upper lave <i>Min</i>	dominant lifeform. <u>r lifeform)</u> <u>Max</u>
□Shrub ✓Tree <u>Fuel Model</u> 9	Indicato Canopy PIRI	or Species* and Position Upper Upper	Upper layer Structure	r lifeform differs from o Data (for upper lave Min 21 % Tree 10.1m	dominant lifeform. <u>r lifeform)</u> <u>Max</u> 70 % Tree 25m

Class	E	5%
	_	

Late Development 1 Closed

Upper Layer Lifeform .

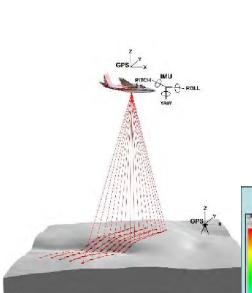
Indicator Species* and						
Canopy Position						
PIRI	Upper					
PIPU5 Upper						
QUCO2	Mid-Upper					

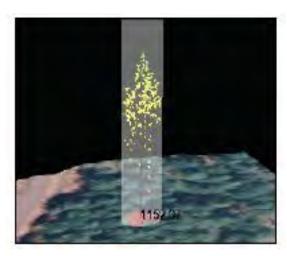
Structure Data (for upper layer lifeform)					
		Min	Max		
Cover		71%	100 %		
Height	Tı	ree 10.1m	Tree 25m		
Tron Sizo	Class	Larga 21 33"DD	u		

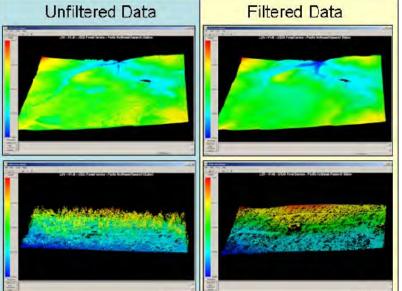
A Word about S-Classes

- S-Classes refer to Successional (age) and Structural (open vs. closed) characteristics of forest
- A tenet of conservation is that if S-Classes are in their proper proportions and orientations, ecosystems are healthy
- Open and early s-classes can be used to evaluate disturbance rates & processes

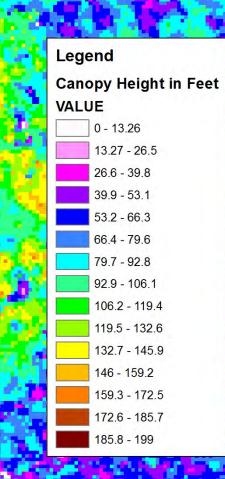
A Schematic of a the Southern Appalachian Oak Forest BPS


Transition Pathway Diagram - SoAppOakFor5713150 All transitions All pathways		- E X	
	Final Conditions		
	Proportion of cells		
Mid1	Mid1 Class Stage	Propn	
20-69	20-69 A Early1 ALL	0.0594 0.1024	
	Mid1 DPN	0.0956	
	E Late1 CLS	0.1358 0.0528	
	F Late2 OPN G Late2 CLS	0.4926 0.0614	
Early1	Participant and a second se		
		Close	
Late1	Late1 Late2 Late →70-129 →130-999 →130-999		
D OPN	E CLS F OPN G CL		
	TU TU T		
		[Status
			Project: SoAppOakFor5713150 Region: Nati
		_	Modified
The state of the s	Annual Mult. Landscape Mult. Feedback Mult. Trend Mult. TSD Dn Trans. Disabled		

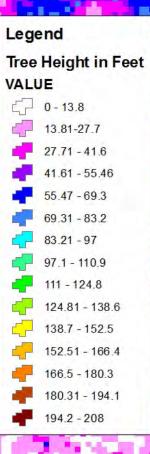

Using Lasers to *Measure* Vegetation and Analyze Ecosystems



What is LiDAR?

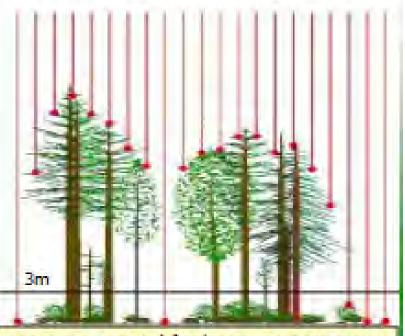


Where can I get LiDAR data? http://lidar.cr.usgs.gov/LIDAR_Viewer/viewer.php


Trginia Norte Catolera th Cer Georgia outh LiDAR Image of Welch Branch from Above

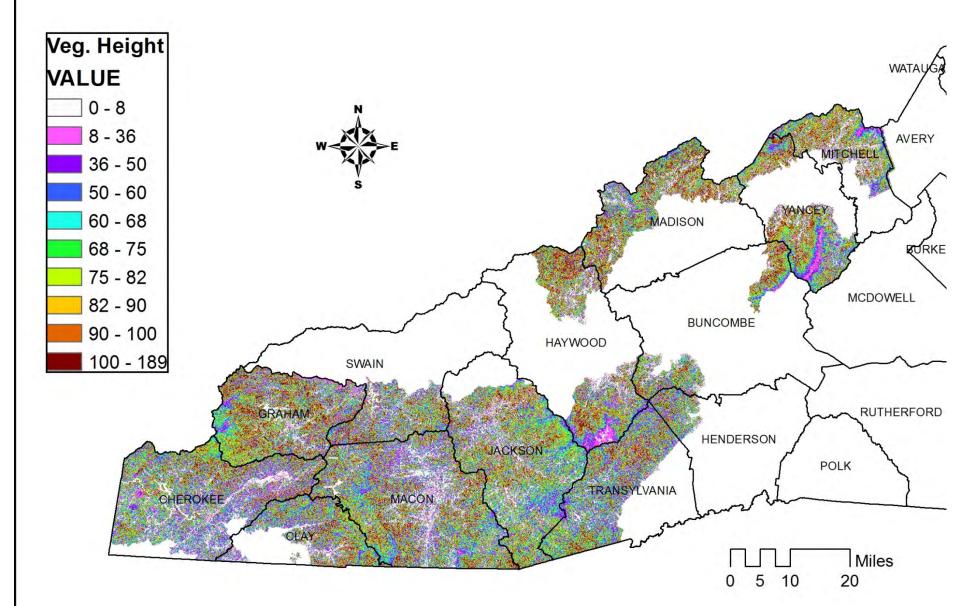
180 Feet

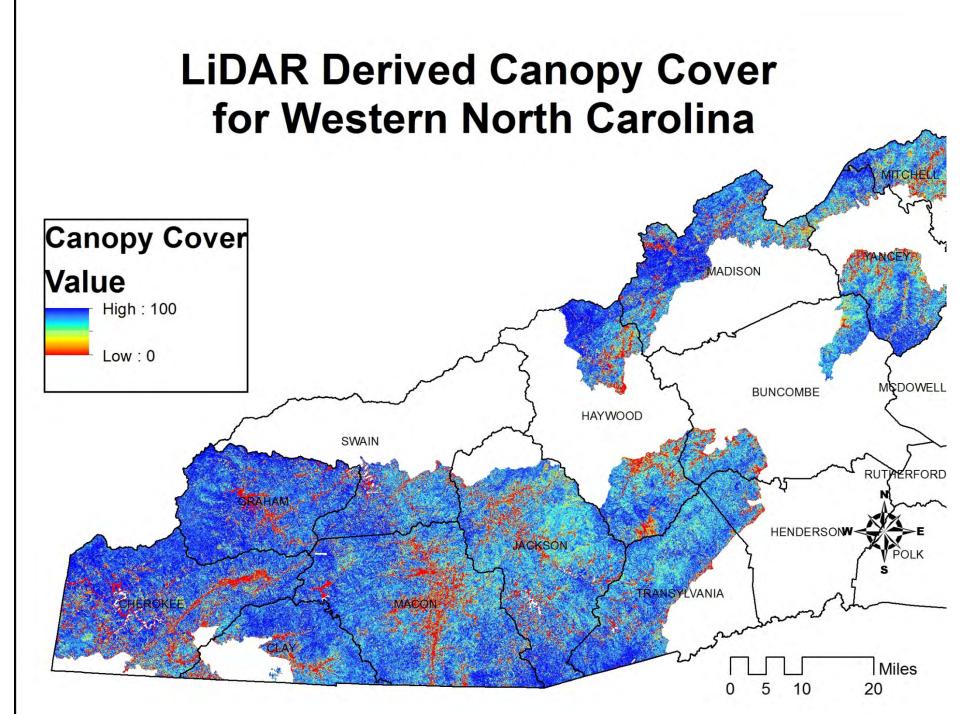
45 90



LIDAR Image of Fork Ridge Poplar from Above

Canopy Height, Canopy Cover, & Shrub Density, Processed with Fusion Software



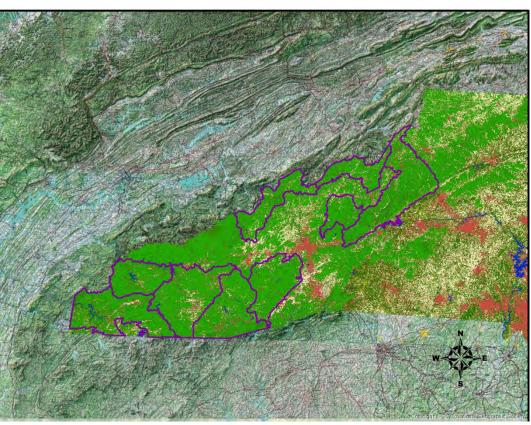


Overstory canopy is defined as any vegetation greater than the height break (3 meters in this example) above ground. Of the 21 LIDAR pulses that enter the canopy, 16 first returns are recorded above the 3m threshold. The LIDAR-based overstory cover estimate for the area in this graphic would be computed as 16/21 or 76%.

Vegetation Height in Study Area

Strengths & Limitations of LiDAR for Vegetation Analysis

Strengths


- High Resolution
- Great for Forest Structure; best available technology for capturing vertical structure
- Allows analysis across ownerships
- Captures Natural Disturbances

Limitations

- These data do not include species composition
- Collected in 2003 (Phase II) & 2005 (Phase III)
- Can be trained to plots, but plots must be .1 Ha or larger, and concerns exist about re-projection of original data

Assumptions used in this study1. GAP data is a sufficiently skilled tool for discerning forest from non-forest

Assumptions used in this study of Ecological Departure

2. Tree height can be correlated with tree age

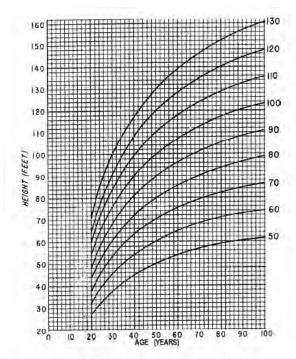


Figure 2. --Site index curves at an index age of 5'0 years for yellow-poplar in the southern Appalachian Mountains.

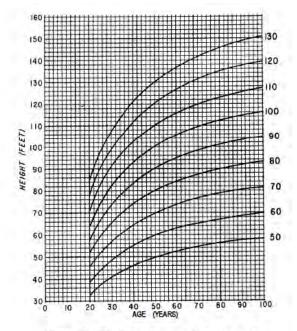


Figure 3. --Site index curves at index age of 50 years for yellow-poplar in the Piedmont of Virginia and the Carolinas.

> Donald E. Beck Asheville **Research** Center

Reasons why Site Index Underestimates Tall (Old) Forest

- Not every point in a tree's crown reaches max height
- Not every species grows as fast as the site index for the characteristic species
- Not all forests measured are even aged; large areas have been high-graded

My Solution: use Forest Service Age Data and analyze the distribution of heights in an ecosystem to define the height break between mid and late-succession

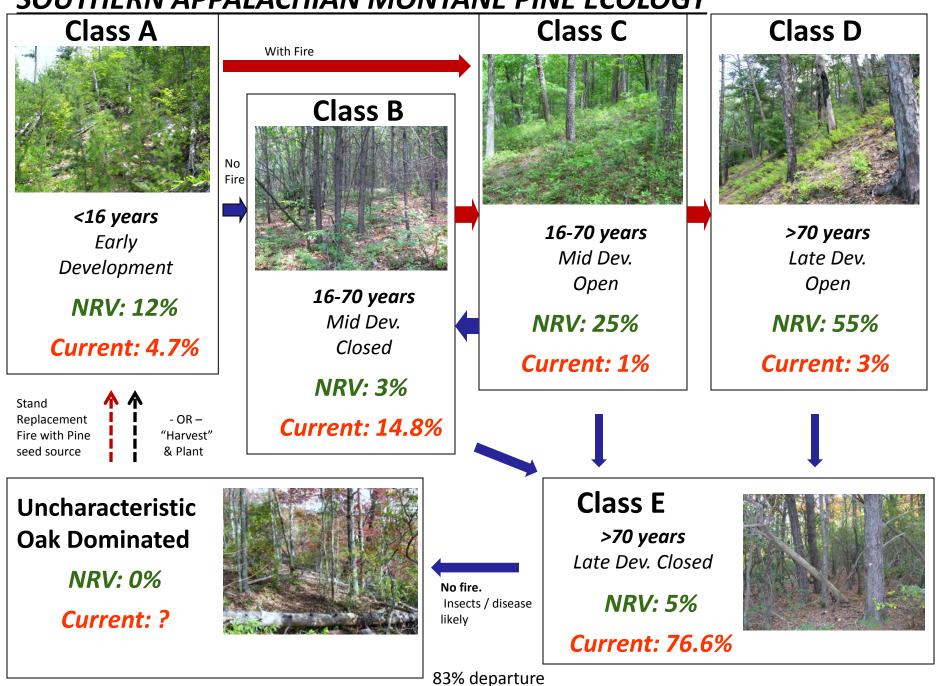
Count: Minimum: Maximum: Sum: Mean: Standard Deviation:	377680 1 2,929,345,9 77,561486 25,010693	48 0 .89
1	25.010093	
	Break Values	94
189	44 58 67 74 80 86 92	
	99 108 189 • • • • •	,
	8	2010年1月11日 2011

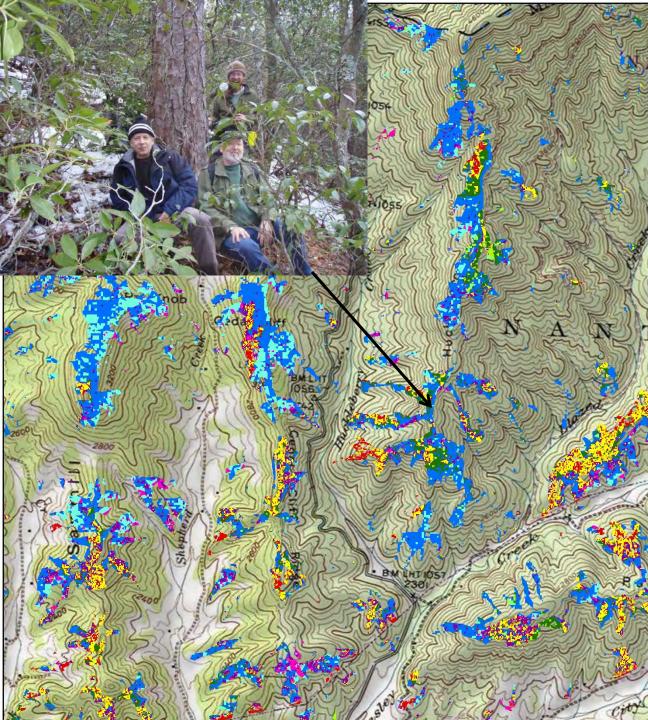
Assumptions used in this study

- 3. LiDAR vegetation models are the most accurate tool available for capturing vegetation structure
- 4. The metrics chosen are for height (age), canopy closure, and shrub density are ecologically meaningful but broad enough to mostly right, most of the time.
- 5. Potential Natural Vegetation Mapping is the most accurate ecosystem mapping tool available

Biggest Assumption

- Structural & successional classes reflect the processes that have shaped and are shaping forests
- A comprehensive analysis of structural & successional classes provides a method for evaluating the operation of ecosystem processes, the potential habitat of species of concern, and other conservation issues


Metric: Ecological Departure


- Measures each ecological system's condition across a landscape
- Integrated measure based upon vegetation *composition*, structure and disturbance regimes
- Departure of current vegetation from its natural range of variability (NRV) -- i.e., dissimilarity between expected and current vegetation classes

Ecological Departure =
$$100\% - \sum_{i=1}^{n} \min\{Current_i, NRV_i\}$$

Low \longleftarrow High
 $0-33\%$ 34-66% 67-100%



SOUTHERN APPALACHIAN MONTANE PINE ECOLOGY

Legend

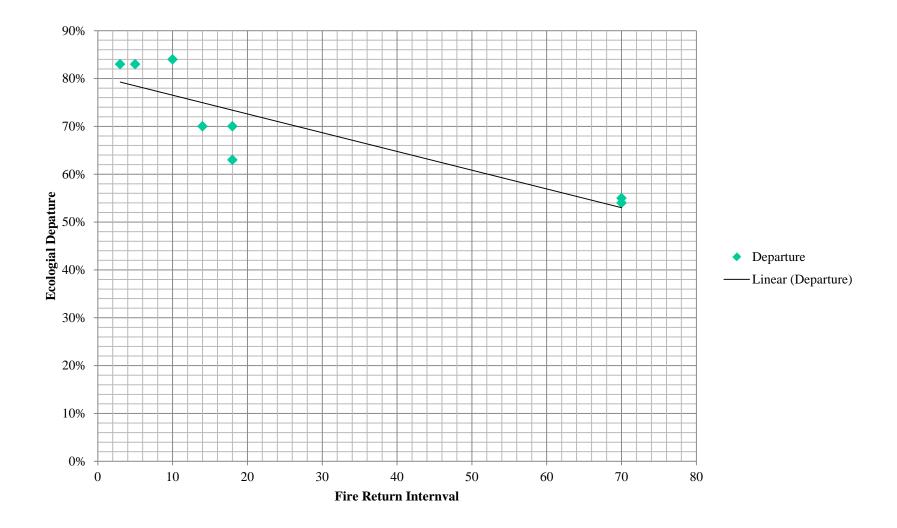
Beaster

60

Comparison of Ecological Departure across Ecosystems

Ecosystem	National Forest	Other Lands	All Lands	Driver
Dry Oak	84	80	80	Too much closed canopy, lacks old- growth
POH*	83	74	79	Too much closed canopy
Shortleaf-Oak*	83	63	71	Too much closed canopy, lacks early
DMOH	70	71	71	Too much closed canopy, lacks old- growth
Mesic Oak	70	74	72	Too much closed canopy, lacks old- growth
HERO	64	75	65	Too much closed canopy, lacks old- growth
Acidic Cove	55	57	56	Lacks old-growth
Rich Cove	54	56	56	Lacks old-growth, too much mid-seral forest (<100 years)
Spruce-Fir*	34	43	39	Too young, species composition?
N Hardwoods*	б	14	10	* = old-growth not modeled

New Products Produced Nantahala-Pisgah National Forest


- Shapefiles of 13 s-classes for 10 ecosystems
- Separate shapefiles for Forest Service and All Lands
- These shapefiles allow for the identification and management of over-abundant s-classes on a site-specific basis
- Most ecosystems in the study area are very departed from our reference

Ecological Departure Compared to Historical Fire Return Interval

Ecosystsem	National Forest Rank	Other Lands Rank	All Lands Rank	FRI
Dry Oak	1	1	1	10 years
РОН	2	4	2	5 years
Shortleaf-Oak	3	8	5	5 years
DMOH	4	5	3	14 years
Mesic Oak	5	3	4	18 years
Acid Cove	6	6	6	70 years
HERO	7	2	7	18 years?
Rich Cove	8	7	8	70 years
Spruce-Fir	9	9	9	1000 years
Northern Hardwoods	10	10	10	500 years

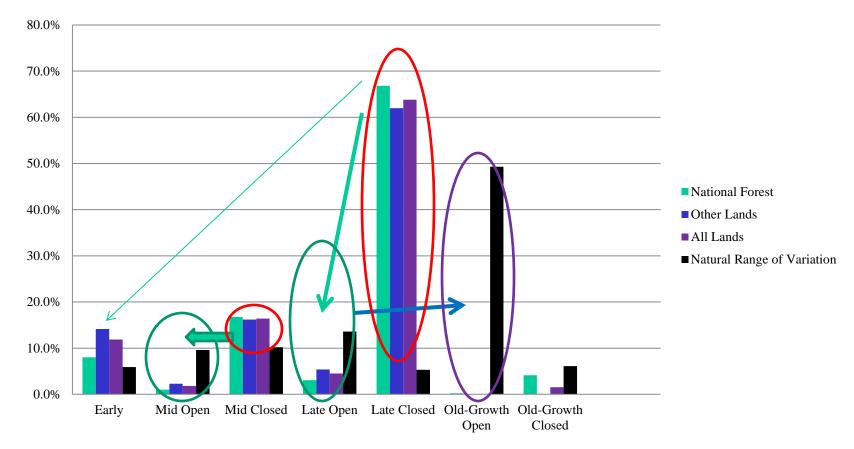
Ecosystem Departure Plotted vs. FRI

% High Shrub Density by Ecosystem

Ecosystem	National Forest	Other Lands	All Lands
Dry Oak	54.3%	43.4%	48.4%
Pine-Oak/Heath	55.5%	46%	50.8%
Shortleaf-Oak	34.4%	43.2%	39.2%
DMOH	48.4%	40%	43.1%
Mesic Oak	40.8%	22.3%	36.1%
Acidic Cove	100%	100%	100%
HERO	44.4%	36.7%	42.5%
Rich Cove	NA	NA	NA
Spruce-Fir	NA	NA	NA
Northern Hardwoods	NA	NA	NA

% Closed Canopy by Ecosystem vs. NRV

Ecosystem	National Forest	Other Lands	All Lands	NRV
Shortleaf Pine – Oak	85%	65%	74%	3%
Pine-Oak – Heath	92%	82%	87%	8%
Dry-Oak Forest	88%	84%	86%	10%
Dry-Mesic Oak-Hickory	88%	78%	82%	22%
Mesic Oak-Hickory	88%	75%	86%	42%
High Elevation Red Oak	91%	84%	89%	42%
Spruce-Fir	73%	73%	73%	72%
Northern Hardwoods	89%	77%	84%	89%
Rich Cove	84%	68%	75%	96%
Acidic Cove	94%	88%	91%	96%

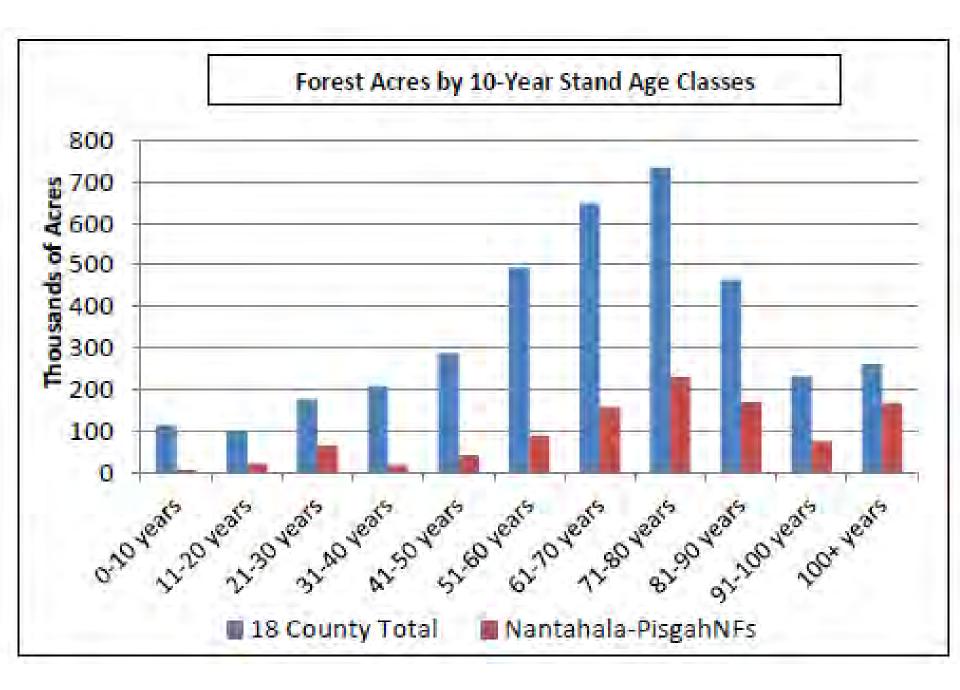

% Late Seral & Old-Growth by Ecosystem

Ecosystem	National Forest	Other Lands	All Lands	NRV
Acidic Cove Forest	11%	9%	10%	79%
Rich Cove Forest	26%	16%	20%	79%
Mesic Oak-Hickory Forest	69%	62%	66%	81%
High Elevation Red Oak	77%	73%	76%	81%
Dry-Mesic Oak-Hickory	74%	67%	70%	74%
Dry Oak Forest	77%	77%	77%	80%
Northern Hardwoods	70%	64%	67%	77%
Spruce-Fir Forest	41%	18%	35%	58%
Pine-Oak/Heath	80%	78%	79%	60%
Shortleaf-Oak	60%	44%	51%	34%

General Trends for the Nantahala-Pisgah

- Most forests have a canopy cover and shrub layer that is more dense than predicted by our reference; the exception being the economically valuable Rich Cove Forest and Spruce-Fir Forest
- There has been insufficient fire prior to 2005 to create and maintain open forest canopies
- All forests in the study area, with the exception of Pine-Oak/Heath, have below reference levels of old-growth forest
- Private land is more disturbed in every ecosystem than Forest Service Land and has a lower
 proportion of old (tall) forest.

Current Condition of Dry-Mesic Oak-Hickory Forest vs. NRV



Management Implications

- Oak and Pine Forests need more frequent fire than they have experienced in the past five decades
- Increasing the amount of open-canopied forest in Oak and Pine-Forests will benefit those ecosystems and their attendant wildlife.
- Continuing to manage for old-growth in both the unsuitable and suitable timber base will benefit hardwood ecosystems. The majority of old-growth in the region is on public land.

Opportunities for Restoration

- Some ecosystems, e.g. Pine-Oak/Heath and Dry Oak, are in high departure and offer little economic return on management
- Other ecosystems, e.g. shortleaf pine, dry-mesic oak, mesic oak, and (with caution) high-elevation red oak, are significantly departed and offer economic return on management

My Proposal: Mechanically Open Up to 51,719 Acres in Operable Pine and Oak Ecosystems in Next Forest Plan Using Mechanical Techniques and Fire

- Up to 18,707 acres in Shortleaf Pine/Oak (42%) cutting mostly white pine and hardwoods. Regenerating and planting in most departed areas, moving to woodlands in others
- Up to10,599 acres in Dry Mesic Oak-Hickory (10%) cutting white pine, poplar, red maple & oak
- Up to18,613 acres in Mesic Oak-Hickory (10%) ""
- Up to 4,250 acres in HERO (5%) cutting mostly oak and other hardwoods
- Keep regeneration harvest at current levels; fire-only management in SNHA's, Core Interior Forests, etc.
- Use the proceeds of harvest to fund other restoration work

Estimated Acreage of the Most Departed Ecosystems on Nantahala-Pisgah National Forest

Ecosystem	Potential Acres on NF	% of Acres Convert to Open	Increase in Early Acres Needed for NRV
Shortleaf Pine/Oak	44,541	20% - 8,908	9,799
Pine-Oak/Heath	101,275	20% - 20,250	3,118
High Elevation Red Oak	38,637	10% - 3,864	386
Mesic Oak-Hickory	186,131	10% -18,613	NA
Dry-Mesic Oak	105,991	10% -10,599	NA
Dry Oak	59,677	20% - 11,934	596
Total		74,168 Acres	13,899

Some Cautions!!!

- To be successful, areas appropriate for restoration will need to be carefully sited. Much of the Nantahala-Pisgah is not appropriate for timber harvest.
- Let's not lose sight of Dry Oak and Pine-Oak/Heath Forest despite their lack of commercial viability
- The current sustainable harvest of the Nantahala-Pisgah in the 1994 Plan Amendment is around 3,000 acres/year
- This is an ambitious goal. There is currently not the capacity to accomplish it with either the Forest Service or with partner organizations.
- Increasing restoration harvest to 2,500 acres annually would represent a 200% increase in management

Acknowledgements

Thanks to The Community Foundation of Western North Carolina, Cherokee NF Landscape Restoration Initiative, SBR FLN, NCWRC, TWS, TNC, Kathryn Medlock, Steve Simon, Paul Jost, Jim Smith, Greg Low, Hugh Irwin, Ryan Jacobs, Gordon Warburton, Kendrick Weeks, and many others.

